libstdc++
bits/random.tcc
Go to the documentation of this file.
1 // random number generation (out of line) -*- C++ -*-
2 
3 // Copyright (C) 2009-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/random.tcc
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{random}
28  */
29 
30 #ifndef _RANDOM_TCC
31 #define _RANDOM_TCC 1
32 
33 #include <numeric> // std::accumulate and std::partial_sum
34 
35 namespace std _GLIBCXX_VISIBILITY(default)
36 {
37  /*
38  * (Further) implementation-space details.
39  */
40  namespace __detail
41  {
42  _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44  // General case for x = (ax + c) mod m -- use Schrage's algorithm
45  // to avoid integer overflow.
46  //
47  // Preconditions: a > 0, m > 0.
48  //
49  // Note: only works correctly for __m % __a < __m / __a.
50  template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
51  _Tp
52  _Mod<_Tp, __m, __a, __c, false, true>::
53  __calc(_Tp __x)
54  {
55  if (__a == 1)
56  __x %= __m;
57  else
58  {
59  static const _Tp __q = __m / __a;
60  static const _Tp __r = __m % __a;
61 
62  _Tp __t1 = __a * (__x % __q);
63  _Tp __t2 = __r * (__x / __q);
64  if (__t1 >= __t2)
65  __x = __t1 - __t2;
66  else
67  __x = __m - __t2 + __t1;
68  }
69 
70  if (__c != 0)
71  {
72  const _Tp __d = __m - __x;
73  if (__d > __c)
74  __x += __c;
75  else
76  __x = __c - __d;
77  }
78  return __x;
79  }
80 
81  template<typename _InputIterator, typename _OutputIterator,
82  typename _Tp>
83  _OutputIterator
84  __normalize(_InputIterator __first, _InputIterator __last,
85  _OutputIterator __result, const _Tp& __factor)
86  {
87  for (; __first != __last; ++__first, ++__result)
88  *__result = *__first / __factor;
89  return __result;
90  }
91 
92  _GLIBCXX_END_NAMESPACE_VERSION
93  } // namespace __detail
94 
95 _GLIBCXX_BEGIN_NAMESPACE_VERSION
96 
97  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
98  constexpr _UIntType
99  linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
100 
101  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
102  constexpr _UIntType
103  linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
104 
105  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
106  constexpr _UIntType
107  linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
108 
109  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
110  constexpr _UIntType
111  linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
112 
113  /**
114  * Seeds the LCR with integral value @p __s, adjusted so that the
115  * ring identity is never a member of the convergence set.
116  */
117  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
118  void
121  {
122  if ((__detail::__mod<_UIntType, __m>(__c) == 0)
123  && (__detail::__mod<_UIntType, __m>(__s) == 0))
124  _M_x = 1;
125  else
126  _M_x = __detail::__mod<_UIntType, __m>(__s);
127  }
128 
129  /**
130  * Seeds the LCR engine with a value generated by @p __q.
131  */
132  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
133  template<typename _Sseq>
134  typename std::enable_if<std::is_class<_Sseq>::value>::type
136  seed(_Sseq& __q)
137  {
138  const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
139  : std::__lg(__m);
140  const _UIntType __k = (__k0 + 31) / 32;
141  uint_least32_t __arr[__k + 3];
142  __q.generate(__arr + 0, __arr + __k + 3);
143  _UIntType __factor = 1u;
144  _UIntType __sum = 0u;
145  for (size_t __j = 0; __j < __k; ++__j)
146  {
147  __sum += __arr[__j + 3] * __factor;
148  __factor *= __detail::_Shift<_UIntType, 32>::__value;
149  }
150  seed(__sum);
151  }
152 
153  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
154  typename _CharT, typename _Traits>
156  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
157  const linear_congruential_engine<_UIntType,
158  __a, __c, __m>& __lcr)
159  {
160  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
161  typedef typename __ostream_type::ios_base __ios_base;
162 
163  const typename __ios_base::fmtflags __flags = __os.flags();
164  const _CharT __fill = __os.fill();
166  __os.fill(__os.widen(' '));
167 
168  __os << __lcr._M_x;
169 
170  __os.flags(__flags);
171  __os.fill(__fill);
172  return __os;
173  }
174 
175  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
176  typename _CharT, typename _Traits>
179  linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
180  {
181  typedef std::basic_istream<_CharT, _Traits> __istream_type;
182  typedef typename __istream_type::ios_base __ios_base;
183 
184  const typename __ios_base::fmtflags __flags = __is.flags();
185  __is.flags(__ios_base::dec);
186 
187  __is >> __lcr._M_x;
188 
189  __is.flags(__flags);
190  return __is;
191  }
192 
193 
194  template<typename _UIntType,
195  size_t __w, size_t __n, size_t __m, size_t __r,
196  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
197  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
198  _UIntType __f>
199  constexpr size_t
200  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
201  __s, __b, __t, __c, __l, __f>::word_size;
202 
203  template<typename _UIntType,
204  size_t __w, size_t __n, size_t __m, size_t __r,
205  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
206  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
207  _UIntType __f>
208  constexpr size_t
209  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
210  __s, __b, __t, __c, __l, __f>::state_size;
211 
212  template<typename _UIntType,
213  size_t __w, size_t __n, size_t __m, size_t __r,
214  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
215  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
216  _UIntType __f>
217  constexpr size_t
218  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
219  __s, __b, __t, __c, __l, __f>::shift_size;
220 
221  template<typename _UIntType,
222  size_t __w, size_t __n, size_t __m, size_t __r,
223  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
224  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
225  _UIntType __f>
226  constexpr size_t
227  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
228  __s, __b, __t, __c, __l, __f>::mask_bits;
229 
230  template<typename _UIntType,
231  size_t __w, size_t __n, size_t __m, size_t __r,
232  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
233  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
234  _UIntType __f>
235  constexpr _UIntType
236  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
237  __s, __b, __t, __c, __l, __f>::xor_mask;
238 
239  template<typename _UIntType,
240  size_t __w, size_t __n, size_t __m, size_t __r,
241  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
242  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
243  _UIntType __f>
244  constexpr size_t
245  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
246  __s, __b, __t, __c, __l, __f>::tempering_u;
247 
248  template<typename _UIntType,
249  size_t __w, size_t __n, size_t __m, size_t __r,
250  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
251  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
252  _UIntType __f>
253  constexpr _UIntType
254  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
255  __s, __b, __t, __c, __l, __f>::tempering_d;
256 
257  template<typename _UIntType,
258  size_t __w, size_t __n, size_t __m, size_t __r,
259  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
260  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
261  _UIntType __f>
262  constexpr size_t
263  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
264  __s, __b, __t, __c, __l, __f>::tempering_s;
265 
266  template<typename _UIntType,
267  size_t __w, size_t __n, size_t __m, size_t __r,
268  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
269  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
270  _UIntType __f>
271  constexpr _UIntType
272  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
273  __s, __b, __t, __c, __l, __f>::tempering_b;
274 
275  template<typename _UIntType,
276  size_t __w, size_t __n, size_t __m, size_t __r,
277  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
278  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
279  _UIntType __f>
280  constexpr size_t
281  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
282  __s, __b, __t, __c, __l, __f>::tempering_t;
283 
284  template<typename _UIntType,
285  size_t __w, size_t __n, size_t __m, size_t __r,
286  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
287  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
288  _UIntType __f>
289  constexpr _UIntType
290  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
291  __s, __b, __t, __c, __l, __f>::tempering_c;
292 
293  template<typename _UIntType,
294  size_t __w, size_t __n, size_t __m, size_t __r,
295  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
296  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
297  _UIntType __f>
298  constexpr size_t
299  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
300  __s, __b, __t, __c, __l, __f>::tempering_l;
301 
302  template<typename _UIntType,
303  size_t __w, size_t __n, size_t __m, size_t __r,
304  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
305  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
306  _UIntType __f>
307  constexpr _UIntType
308  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
309  __s, __b, __t, __c, __l, __f>::
310  initialization_multiplier;
311 
312  template<typename _UIntType,
313  size_t __w, size_t __n, size_t __m, size_t __r,
314  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
315  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
316  _UIntType __f>
317  constexpr _UIntType
318  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
319  __s, __b, __t, __c, __l, __f>::default_seed;
320 
321  template<typename _UIntType,
322  size_t __w, size_t __n, size_t __m, size_t __r,
323  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
324  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
325  _UIntType __f>
326  void
327  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
328  __s, __b, __t, __c, __l, __f>::
329  seed(result_type __sd)
330  {
331  _M_x[0] = __detail::__mod<_UIntType,
332  __detail::_Shift<_UIntType, __w>::__value>(__sd);
333 
334  for (size_t __i = 1; __i < state_size; ++__i)
335  {
336  _UIntType __x = _M_x[__i - 1];
337  __x ^= __x >> (__w - 2);
338  __x *= __f;
339  __x += __detail::__mod<_UIntType, __n>(__i);
340  _M_x[__i] = __detail::__mod<_UIntType,
341  __detail::_Shift<_UIntType, __w>::__value>(__x);
342  }
343  _M_p = state_size;
344  }
345 
346  template<typename _UIntType,
347  size_t __w, size_t __n, size_t __m, size_t __r,
348  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
349  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
350  _UIntType __f>
351  template<typename _Sseq>
352  typename std::enable_if<std::is_class<_Sseq>::value>::type
353  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
354  __s, __b, __t, __c, __l, __f>::
355  seed(_Sseq& __q)
356  {
357  const _UIntType __upper_mask = (~_UIntType()) << __r;
358  const size_t __k = (__w + 31) / 32;
359  uint_least32_t __arr[__n * __k];
360  __q.generate(__arr + 0, __arr + __n * __k);
361 
362  bool __zero = true;
363  for (size_t __i = 0; __i < state_size; ++__i)
364  {
365  _UIntType __factor = 1u;
366  _UIntType __sum = 0u;
367  for (size_t __j = 0; __j < __k; ++__j)
368  {
369  __sum += __arr[__k * __i + __j] * __factor;
370  __factor *= __detail::_Shift<_UIntType, 32>::__value;
371  }
372  _M_x[__i] = __detail::__mod<_UIntType,
373  __detail::_Shift<_UIntType, __w>::__value>(__sum);
374 
375  if (__zero)
376  {
377  if (__i == 0)
378  {
379  if ((_M_x[0] & __upper_mask) != 0u)
380  __zero = false;
381  }
382  else if (_M_x[__i] != 0u)
383  __zero = false;
384  }
385  }
386  if (__zero)
387  _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
388  _M_p = state_size;
389  }
390 
391  template<typename _UIntType, size_t __w,
392  size_t __n, size_t __m, size_t __r,
393  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
394  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
395  _UIntType __f>
396  void
397  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
398  __s, __b, __t, __c, __l, __f>::
399  _M_gen_rand(void)
400  {
401  const _UIntType __upper_mask = (~_UIntType()) << __r;
402  const _UIntType __lower_mask = ~__upper_mask;
403 
404  for (size_t __k = 0; __k < (__n - __m); ++__k)
405  {
406  _UIntType __y = ((_M_x[__k] & __upper_mask)
407  | (_M_x[__k + 1] & __lower_mask));
408  _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
409  ^ ((__y & 0x01) ? __a : 0));
410  }
411 
412  for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
413  {
414  _UIntType __y = ((_M_x[__k] & __upper_mask)
415  | (_M_x[__k + 1] & __lower_mask));
416  _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
417  ^ ((__y & 0x01) ? __a : 0));
418  }
419 
420  _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
421  | (_M_x[0] & __lower_mask));
422  _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
423  ^ ((__y & 0x01) ? __a : 0));
424  _M_p = 0;
425  }
426 
427  template<typename _UIntType, size_t __w,
428  size_t __n, size_t __m, size_t __r,
429  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
430  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
431  _UIntType __f>
432  void
433  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
434  __s, __b, __t, __c, __l, __f>::
435  discard(unsigned long long __z)
436  {
437  while (__z > state_size - _M_p)
438  {
439  __z -= state_size - _M_p;
440  _M_gen_rand();
441  }
442  _M_p += __z;
443  }
444 
445  template<typename _UIntType, size_t __w,
446  size_t __n, size_t __m, size_t __r,
447  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
448  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
449  _UIntType __f>
450  typename
451  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
452  __s, __b, __t, __c, __l, __f>::result_type
453  mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
454  __s, __b, __t, __c, __l, __f>::
455  operator()()
456  {
457  // Reload the vector - cost is O(n) amortized over n calls.
458  if (_M_p >= state_size)
459  _M_gen_rand();
460 
461  // Calculate o(x(i)).
462  result_type __z = _M_x[_M_p++];
463  __z ^= (__z >> __u) & __d;
464  __z ^= (__z << __s) & __b;
465  __z ^= (__z << __t) & __c;
466  __z ^= (__z >> __l);
467 
468  return __z;
469  }
470 
471  template<typename _UIntType, size_t __w,
472  size_t __n, size_t __m, size_t __r,
473  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
474  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
475  _UIntType __f, typename _CharT, typename _Traits>
477  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
478  const mersenne_twister_engine<_UIntType, __w, __n, __m,
479  __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
480  {
481  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
482  typedef typename __ostream_type::ios_base __ios_base;
483 
484  const typename __ios_base::fmtflags __flags = __os.flags();
485  const _CharT __fill = __os.fill();
486  const _CharT __space = __os.widen(' ');
488  __os.fill(__space);
489 
490  for (size_t __i = 0; __i < __n; ++__i)
491  __os << __x._M_x[__i] << __space;
492  __os << __x._M_p;
493 
494  __os.flags(__flags);
495  __os.fill(__fill);
496  return __os;
497  }
498 
499  template<typename _UIntType, size_t __w,
500  size_t __n, size_t __m, size_t __r,
501  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
502  _UIntType __b, size_t __t, _UIntType __c, size_t __l,
503  _UIntType __f, typename _CharT, typename _Traits>
506  mersenne_twister_engine<_UIntType, __w, __n, __m,
507  __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
508  {
509  typedef std::basic_istream<_CharT, _Traits> __istream_type;
510  typedef typename __istream_type::ios_base __ios_base;
511 
512  const typename __ios_base::fmtflags __flags = __is.flags();
514 
515  for (size_t __i = 0; __i < __n; ++__i)
516  __is >> __x._M_x[__i];
517  __is >> __x._M_p;
518 
519  __is.flags(__flags);
520  return __is;
521  }
522 
523 
524  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
525  constexpr size_t
526  subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
527 
528  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
529  constexpr size_t
530  subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
531 
532  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
533  constexpr size_t
534  subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
535 
536  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
537  constexpr _UIntType
538  subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
539 
540  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
541  void
542  subtract_with_carry_engine<_UIntType, __w, __s, __r>::
543  seed(result_type __value)
544  {
546  __lcg(__value == 0u ? default_seed : __value);
547 
548  const size_t __n = (__w + 31) / 32;
549 
550  for (size_t __i = 0; __i < long_lag; ++__i)
551  {
552  _UIntType __sum = 0u;
553  _UIntType __factor = 1u;
554  for (size_t __j = 0; __j < __n; ++__j)
555  {
556  __sum += __detail::__mod<uint_least32_t,
557  __detail::_Shift<uint_least32_t, 32>::__value>
558  (__lcg()) * __factor;
559  __factor *= __detail::_Shift<_UIntType, 32>::__value;
560  }
561  _M_x[__i] = __detail::__mod<_UIntType,
562  __detail::_Shift<_UIntType, __w>::__value>(__sum);
563  }
564  _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
565  _M_p = 0;
566  }
567 
568  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
569  template<typename _Sseq>
570  typename std::enable_if<std::is_class<_Sseq>::value>::type
571  subtract_with_carry_engine<_UIntType, __w, __s, __r>::
572  seed(_Sseq& __q)
573  {
574  const size_t __k = (__w + 31) / 32;
575  uint_least32_t __arr[__r * __k];
576  __q.generate(__arr + 0, __arr + __r * __k);
577 
578  for (size_t __i = 0; __i < long_lag; ++__i)
579  {
580  _UIntType __sum = 0u;
581  _UIntType __factor = 1u;
582  for (size_t __j = 0; __j < __k; ++__j)
583  {
584  __sum += __arr[__k * __i + __j] * __factor;
585  __factor *= __detail::_Shift<_UIntType, 32>::__value;
586  }
587  _M_x[__i] = __detail::__mod<_UIntType,
588  __detail::_Shift<_UIntType, __w>::__value>(__sum);
589  }
590  _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
591  _M_p = 0;
592  }
593 
594  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
595  typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
596  result_type
597  subtract_with_carry_engine<_UIntType, __w, __s, __r>::
598  operator()()
599  {
600  // Derive short lag index from current index.
601  long __ps = _M_p - short_lag;
602  if (__ps < 0)
603  __ps += long_lag;
604 
605  // Calculate new x(i) without overflow or division.
606  // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
607  // cannot overflow.
608  _UIntType __xi;
609  if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
610  {
611  __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
612  _M_carry = 0;
613  }
614  else
615  {
616  __xi = (__detail::_Shift<_UIntType, __w>::__value
617  - _M_x[_M_p] - _M_carry + _M_x[__ps]);
618  _M_carry = 1;
619  }
620  _M_x[_M_p] = __xi;
621 
622  // Adjust current index to loop around in ring buffer.
623  if (++_M_p >= long_lag)
624  _M_p = 0;
625 
626  return __xi;
627  }
628 
629  template<typename _UIntType, size_t __w, size_t __s, size_t __r,
630  typename _CharT, typename _Traits>
632  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
633  const subtract_with_carry_engine<_UIntType,
634  __w, __s, __r>& __x)
635  {
636  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
637  typedef typename __ostream_type::ios_base __ios_base;
638 
639  const typename __ios_base::fmtflags __flags = __os.flags();
640  const _CharT __fill = __os.fill();
641  const _CharT __space = __os.widen(' ');
643  __os.fill(__space);
644 
645  for (size_t __i = 0; __i < __r; ++__i)
646  __os << __x._M_x[__i] << __space;
647  __os << __x._M_carry << __space << __x._M_p;
648 
649  __os.flags(__flags);
650  __os.fill(__fill);
651  return __os;
652  }
653 
654  template<typename _UIntType, size_t __w, size_t __s, size_t __r,
655  typename _CharT, typename _Traits>
658  subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
659  {
660  typedef std::basic_ostream<_CharT, _Traits> __istream_type;
661  typedef typename __istream_type::ios_base __ios_base;
662 
663  const typename __ios_base::fmtflags __flags = __is.flags();
665 
666  for (size_t __i = 0; __i < __r; ++__i)
667  __is >> __x._M_x[__i];
668  __is >> __x._M_carry;
669  __is >> __x._M_p;
670 
671  __is.flags(__flags);
672  return __is;
673  }
674 
675 
676  template<typename _RandomNumberEngine, size_t __p, size_t __r>
677  constexpr size_t
678  discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
679 
680  template<typename _RandomNumberEngine, size_t __p, size_t __r>
681  constexpr size_t
682  discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
683 
684  template<typename _RandomNumberEngine, size_t __p, size_t __r>
685  typename discard_block_engine<_RandomNumberEngine,
686  __p, __r>::result_type
689  {
690  if (_M_n >= used_block)
691  {
692  _M_b.discard(block_size - _M_n);
693  _M_n = 0;
694  }
695  ++_M_n;
696  return _M_b();
697  }
698 
699  template<typename _RandomNumberEngine, size_t __p, size_t __r,
700  typename _CharT, typename _Traits>
702  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
703  const discard_block_engine<_RandomNumberEngine,
704  __p, __r>& __x)
705  {
706  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
707  typedef typename __ostream_type::ios_base __ios_base;
708 
709  const typename __ios_base::fmtflags __flags = __os.flags();
710  const _CharT __fill = __os.fill();
711  const _CharT __space = __os.widen(' ');
713  __os.fill(__space);
714 
715  __os << __x.base() << __space << __x._M_n;
716 
717  __os.flags(__flags);
718  __os.fill(__fill);
719  return __os;
720  }
721 
722  template<typename _RandomNumberEngine, size_t __p, size_t __r,
723  typename _CharT, typename _Traits>
726  discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
727  {
728  typedef std::basic_istream<_CharT, _Traits> __istream_type;
729  typedef typename __istream_type::ios_base __ios_base;
730 
731  const typename __ios_base::fmtflags __flags = __is.flags();
733 
734  __is >> __x._M_b >> __x._M_n;
735 
736  __is.flags(__flags);
737  return __is;
738  }
739 
740 
741  template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
742  typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
743  result_type
746  {
747  typedef typename _RandomNumberEngine::result_type _Eresult_type;
748  const _Eresult_type __r
749  = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max()
750  ? _M_b.max() - _M_b.min() + 1 : 0);
751  const unsigned __edig = std::numeric_limits<_Eresult_type>::digits;
752  const unsigned __m = __r ? std::__lg(__r) : __edig;
753 
754  typedef typename std::common_type<_Eresult_type, result_type>::type
755  __ctype;
756  const unsigned __cdig = std::numeric_limits<__ctype>::digits;
757 
758  unsigned __n, __n0;
759  __ctype __s0, __s1, __y0, __y1;
760 
761  for (size_t __i = 0; __i < 2; ++__i)
762  {
763  __n = (__w + __m - 1) / __m + __i;
764  __n0 = __n - __w % __n;
765  const unsigned __w0 = __w / __n; // __w0 <= __m
766 
767  __s0 = 0;
768  __s1 = 0;
769  if (__w0 < __cdig)
770  {
771  __s0 = __ctype(1) << __w0;
772  __s1 = __s0 << 1;
773  }
774 
775  __y0 = 0;
776  __y1 = 0;
777  if (__r)
778  {
779  __y0 = __s0 * (__r / __s0);
780  if (__s1)
781  __y1 = __s1 * (__r / __s1);
782 
783  if (__r - __y0 <= __y0 / __n)
784  break;
785  }
786  else
787  break;
788  }
789 
790  result_type __sum = 0;
791  for (size_t __k = 0; __k < __n0; ++__k)
792  {
793  __ctype __u;
794  do
795  __u = _M_b() - _M_b.min();
796  while (__y0 && __u >= __y0);
797  __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u);
798  }
799  for (size_t __k = __n0; __k < __n; ++__k)
800  {
801  __ctype __u;
802  do
803  __u = _M_b() - _M_b.min();
804  while (__y1 && __u >= __y1);
805  __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u);
806  }
807  return __sum;
808  }
809 
810 
811  template<typename _RandomNumberEngine, size_t __k>
812  constexpr size_t
814 
815  template<typename _RandomNumberEngine, size_t __k>
819  {
820  size_t __j = __k * ((_M_y - _M_b.min())
821  / (_M_b.max() - _M_b.min() + 1.0L));
822  _M_y = _M_v[__j];
823  _M_v[__j] = _M_b();
824 
825  return _M_y;
826  }
827 
828  template<typename _RandomNumberEngine, size_t __k,
829  typename _CharT, typename _Traits>
831  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
833  {
834  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
835  typedef typename __ostream_type::ios_base __ios_base;
836 
837  const typename __ios_base::fmtflags __flags = __os.flags();
838  const _CharT __fill = __os.fill();
839  const _CharT __space = __os.widen(' ');
841  __os.fill(__space);
842 
843  __os << __x.base();
844  for (size_t __i = 0; __i < __k; ++__i)
845  __os << __space << __x._M_v[__i];
846  __os << __space << __x._M_y;
847 
848  __os.flags(__flags);
849  __os.fill(__fill);
850  return __os;
851  }
852 
853  template<typename _RandomNumberEngine, size_t __k,
854  typename _CharT, typename _Traits>
857  shuffle_order_engine<_RandomNumberEngine, __k>& __x)
858  {
859  typedef std::basic_istream<_CharT, _Traits> __istream_type;
860  typedef typename __istream_type::ios_base __ios_base;
861 
862  const typename __ios_base::fmtflags __flags = __is.flags();
864 
865  __is >> __x._M_b;
866  for (size_t __i = 0; __i < __k; ++__i)
867  __is >> __x._M_v[__i];
868  __is >> __x._M_y;
869 
870  __is.flags(__flags);
871  return __is;
872  }
873 
874 
875  template<typename _IntType>
876  template<typename _UniformRandomNumberGenerator>
877  typename uniform_int_distribution<_IntType>::result_type
879  operator()(_UniformRandomNumberGenerator& __urng,
880  const param_type& __param)
881  {
882  typedef typename _UniformRandomNumberGenerator::result_type
883  _Gresult_type;
884  typedef typename std::make_unsigned<result_type>::type __utype;
885  typedef typename std::common_type<_Gresult_type, __utype>::type
886  __uctype;
887 
888  const __uctype __urngmin = __urng.min();
889  const __uctype __urngmax = __urng.max();
890  const __uctype __urngrange = __urngmax - __urngmin;
891  const __uctype __urange
892  = __uctype(__param.b()) - __uctype(__param.a());
893 
894  __uctype __ret;
895 
896  if (__urngrange > __urange)
897  {
898  // downscaling
899  const __uctype __uerange = __urange + 1; // __urange can be zero
900  const __uctype __scaling = __urngrange / __uerange;
901  const __uctype __past = __uerange * __scaling;
902  do
903  __ret = __uctype(__urng()) - __urngmin;
904  while (__ret >= __past);
905  __ret /= __scaling;
906  }
907  else if (__urngrange < __urange)
908  {
909  // upscaling
910  /*
911  Note that every value in [0, urange]
912  can be written uniquely as
913 
914  (urngrange + 1) * high + low
915 
916  where
917 
918  high in [0, urange / (urngrange + 1)]
919 
920  and
921 
922  low in [0, urngrange].
923  */
924  __uctype __tmp; // wraparound control
925  do
926  {
927  const __uctype __uerngrange = __urngrange + 1;
928  __tmp = (__uerngrange * operator()
929  (__urng, param_type(0, __urange / __uerngrange)));
930  __ret = __tmp + (__uctype(__urng()) - __urngmin);
931  }
932  while (__ret > __urange || __ret < __tmp);
933  }
934  else
935  __ret = __uctype(__urng()) - __urngmin;
936 
937  return __ret + __param.a();
938  }
939 
940 
941  template<typename _IntType>
942  template<typename _ForwardIterator,
943  typename _UniformRandomNumberGenerator>
944  void
945  uniform_int_distribution<_IntType>::
946  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
947  _UniformRandomNumberGenerator& __urng,
948  const param_type& __param)
949  {
950  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
951  typedef typename _UniformRandomNumberGenerator::result_type
952  _Gresult_type;
953  typedef typename std::make_unsigned<result_type>::type __utype;
954  typedef typename std::common_type<_Gresult_type, __utype>::type
955  __uctype;
956 
957  const __uctype __urngmin = __urng.min();
958  const __uctype __urngmax = __urng.max();
959  const __uctype __urngrange = __urngmax - __urngmin;
960  const __uctype __urange
961  = __uctype(__param.b()) - __uctype(__param.a());
962 
963  __uctype __ret;
964 
965  if (__urngrange > __urange)
966  {
967  if (__detail::_Power_of_2(__urngrange + 1)
968  && __detail::_Power_of_2(__urange + 1))
969  {
970  while (__f != __t)
971  {
972  __ret = __uctype(__urng()) - __urngmin;
973  *__f++ = (__ret & __urange) + __param.a();
974  }
975  }
976  else
977  {
978  // downscaling
979  const __uctype __uerange = __urange + 1; // __urange can be zero
980  const __uctype __scaling = __urngrange / __uerange;
981  const __uctype __past = __uerange * __scaling;
982  while (__f != __t)
983  {
984  do
985  __ret = __uctype(__urng()) - __urngmin;
986  while (__ret >= __past);
987  *__f++ = __ret / __scaling + __param.a();
988  }
989  }
990  }
991  else if (__urngrange < __urange)
992  {
993  // upscaling
994  /*
995  Note that every value in [0, urange]
996  can be written uniquely as
997 
998  (urngrange + 1) * high + low
999 
1000  where
1001 
1002  high in [0, urange / (urngrange + 1)]
1003 
1004  and
1005 
1006  low in [0, urngrange].
1007  */
1008  __uctype __tmp; // wraparound control
1009  while (__f != __t)
1010  {
1011  do
1012  {
1013  const __uctype __uerngrange = __urngrange + 1;
1014  __tmp = (__uerngrange * operator()
1015  (__urng, param_type(0, __urange / __uerngrange)));
1016  __ret = __tmp + (__uctype(__urng()) - __urngmin);
1017  }
1018  while (__ret > __urange || __ret < __tmp);
1019  *__f++ = __ret;
1020  }
1021  }
1022  else
1023  while (__f != __t)
1024  *__f++ = __uctype(__urng()) - __urngmin + __param.a();
1025  }
1026 
1027  template<typename _IntType, typename _CharT, typename _Traits>
1029  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1031  {
1032  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1033  typedef typename __ostream_type::ios_base __ios_base;
1034 
1035  const typename __ios_base::fmtflags __flags = __os.flags();
1036  const _CharT __fill = __os.fill();
1037  const _CharT __space = __os.widen(' ');
1039  __os.fill(__space);
1040 
1041  __os << __x.a() << __space << __x.b();
1042 
1043  __os.flags(__flags);
1044  __os.fill(__fill);
1045  return __os;
1046  }
1047 
1048  template<typename _IntType, typename _CharT, typename _Traits>
1052  {
1053  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1054  typedef typename __istream_type::ios_base __ios_base;
1055 
1056  const typename __ios_base::fmtflags __flags = __is.flags();
1058 
1059  _IntType __a, __b;
1060  __is >> __a >> __b;
1062  param_type(__a, __b));
1063 
1064  __is.flags(__flags);
1065  return __is;
1066  }
1067 
1068 
1069  template<typename _RealType>
1070  template<typename _ForwardIterator,
1071  typename _UniformRandomNumberGenerator>
1072  void
1073  uniform_real_distribution<_RealType>::
1074  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1075  _UniformRandomNumberGenerator& __urng,
1076  const param_type& __p)
1077  {
1078  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1079  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1080  __aurng(__urng);
1081  auto __range = __p.b() - __p.a();
1082  while (__f != __t)
1083  *__f++ = __aurng() * __range + __p.a();
1084  }
1085 
1086  template<typename _RealType, typename _CharT, typename _Traits>
1087  std::basic_ostream<_CharT, _Traits>&
1088  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1089  const uniform_real_distribution<_RealType>& __x)
1090  {
1091  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1092  typedef typename __ostream_type::ios_base __ios_base;
1093 
1094  const typename __ios_base::fmtflags __flags = __os.flags();
1095  const _CharT __fill = __os.fill();
1096  const std::streamsize __precision = __os.precision();
1097  const _CharT __space = __os.widen(' ');
1099  __os.fill(__space);
1101 
1102  __os << __x.a() << __space << __x.b();
1103 
1104  __os.flags(__flags);
1105  __os.fill(__fill);
1106  __os.precision(__precision);
1107  return __os;
1108  }
1109 
1110  template<typename _RealType, typename _CharT, typename _Traits>
1114  {
1115  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1116  typedef typename __istream_type::ios_base __ios_base;
1117 
1118  const typename __ios_base::fmtflags __flags = __is.flags();
1119  __is.flags(__ios_base::skipws);
1120 
1121  _RealType __a, __b;
1122  __is >> __a >> __b;
1124  param_type(__a, __b));
1125 
1126  __is.flags(__flags);
1127  return __is;
1128  }
1129 
1130 
1131  template<typename _ForwardIterator,
1132  typename _UniformRandomNumberGenerator>
1133  void
1134  std::bernoulli_distribution::
1135  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1136  _UniformRandomNumberGenerator& __urng,
1137  const param_type& __p)
1138  {
1139  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1140  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1141  __aurng(__urng);
1142  auto __limit = __p.p() * (__aurng.max() - __aurng.min());
1143 
1144  while (__f != __t)
1145  *__f++ = (__aurng() - __aurng.min()) < __limit;
1146  }
1147 
1148  template<typename _CharT, typename _Traits>
1149  std::basic_ostream<_CharT, _Traits>&
1150  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1151  const bernoulli_distribution& __x)
1152  {
1153  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1154  typedef typename __ostream_type::ios_base __ios_base;
1155 
1156  const typename __ios_base::fmtflags __flags = __os.flags();
1157  const _CharT __fill = __os.fill();
1158  const std::streamsize __precision = __os.precision();
1160  __os.fill(__os.widen(' '));
1162 
1163  __os << __x.p();
1164 
1165  __os.flags(__flags);
1166  __os.fill(__fill);
1167  __os.precision(__precision);
1168  return __os;
1169  }
1170 
1171 
1172  template<typename _IntType>
1173  template<typename _UniformRandomNumberGenerator>
1174  typename geometric_distribution<_IntType>::result_type
1176  operator()(_UniformRandomNumberGenerator& __urng,
1177  const param_type& __param)
1178  {
1179  // About the epsilon thing see this thread:
1180  // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
1181  const double __naf =
1183  // The largest _RealType convertible to _IntType.
1184  const double __thr =
1186  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1187  __aurng(__urng);
1188 
1189  double __cand;
1190  do
1191  __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p);
1192  while (__cand >= __thr);
1193 
1194  return result_type(__cand + __naf);
1195  }
1196 
1197  template<typename _IntType>
1198  template<typename _ForwardIterator,
1199  typename _UniformRandomNumberGenerator>
1200  void
1201  geometric_distribution<_IntType>::
1202  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1203  _UniformRandomNumberGenerator& __urng,
1204  const param_type& __param)
1205  {
1206  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1207  // About the epsilon thing see this thread:
1208  // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
1209  const double __naf =
1210  (1 - std::numeric_limits<double>::epsilon()) / 2;
1211  // The largest _RealType convertible to _IntType.
1212  const double __thr =
1213  std::numeric_limits<_IntType>::max() + __naf;
1214  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1215  __aurng(__urng);
1216 
1217  while (__f != __t)
1218  {
1219  double __cand;
1220  do
1221  __cand = std::floor(std::log(1.0 - __aurng())
1222  / __param._M_log_1_p);
1223  while (__cand >= __thr);
1224 
1225  *__f++ = __cand + __naf;
1226  }
1227  }
1228 
1229  template<typename _IntType,
1230  typename _CharT, typename _Traits>
1232  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1234  {
1235  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1236  typedef typename __ostream_type::ios_base __ios_base;
1237 
1238  const typename __ios_base::fmtflags __flags = __os.flags();
1239  const _CharT __fill = __os.fill();
1240  const std::streamsize __precision = __os.precision();
1242  __os.fill(__os.widen(' '));
1244 
1245  __os << __x.p();
1246 
1247  __os.flags(__flags);
1248  __os.fill(__fill);
1249  __os.precision(__precision);
1250  return __os;
1251  }
1252 
1253  template<typename _IntType,
1254  typename _CharT, typename _Traits>
1258  {
1259  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1260  typedef typename __istream_type::ios_base __ios_base;
1261 
1262  const typename __ios_base::fmtflags __flags = __is.flags();
1263  __is.flags(__ios_base::skipws);
1264 
1265  double __p;
1266  __is >> __p;
1268 
1269  __is.flags(__flags);
1270  return __is;
1271  }
1272 
1273  // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5.
1274  template<typename _IntType>
1275  template<typename _UniformRandomNumberGenerator>
1276  typename negative_binomial_distribution<_IntType>::result_type
1278  operator()(_UniformRandomNumberGenerator& __urng)
1279  {
1280  const double __y = _M_gd(__urng);
1281 
1282  // XXX Is the constructor too slow?
1284  return __poisson(__urng);
1285  }
1286 
1287  template<typename _IntType>
1288  template<typename _UniformRandomNumberGenerator>
1289  typename negative_binomial_distribution<_IntType>::result_type
1291  operator()(_UniformRandomNumberGenerator& __urng,
1292  const param_type& __p)
1293  {
1295  param_type;
1296 
1297  const double __y =
1298  _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p()));
1299 
1301  return __poisson(__urng);
1302  }
1303 
1304  template<typename _IntType>
1305  template<typename _ForwardIterator,
1306  typename _UniformRandomNumberGenerator>
1307  void
1308  negative_binomial_distribution<_IntType>::
1309  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1310  _UniformRandomNumberGenerator& __urng)
1311  {
1312  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1313  while (__f != __t)
1314  {
1315  const double __y = _M_gd(__urng);
1316 
1317  // XXX Is the constructor too slow?
1319  *__f++ = __poisson(__urng);
1320  }
1321  }
1322 
1323  template<typename _IntType>
1324  template<typename _ForwardIterator,
1325  typename _UniformRandomNumberGenerator>
1326  void
1327  negative_binomial_distribution<_IntType>::
1328  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1329  _UniformRandomNumberGenerator& __urng,
1330  const param_type& __p)
1331  {
1332  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1333  typename std::gamma_distribution<result_type>::param_type
1334  __p2(__p.k(), (1.0 - __p.p()) / __p.p());
1335 
1336  while (__f != __t)
1337  {
1338  const double __y = _M_gd(__urng, __p2);
1339 
1341  *__f++ = __poisson(__urng);
1342  }
1343  }
1344 
1345  template<typename _IntType, typename _CharT, typename _Traits>
1347  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1348  const negative_binomial_distribution<_IntType>& __x)
1349  {
1350  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1351  typedef typename __ostream_type::ios_base __ios_base;
1352 
1353  const typename __ios_base::fmtflags __flags = __os.flags();
1354  const _CharT __fill = __os.fill();
1355  const std::streamsize __precision = __os.precision();
1356  const _CharT __space = __os.widen(' ');
1358  __os.fill(__os.widen(' '));
1360 
1361  __os << __x.k() << __space << __x.p()
1362  << __space << __x._M_gd;
1363 
1364  __os.flags(__flags);
1365  __os.fill(__fill);
1366  __os.precision(__precision);
1367  return __os;
1368  }
1369 
1370  template<typename _IntType, typename _CharT, typename _Traits>
1373  negative_binomial_distribution<_IntType>& __x)
1374  {
1375  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1376  typedef typename __istream_type::ios_base __ios_base;
1377 
1378  const typename __ios_base::fmtflags __flags = __is.flags();
1379  __is.flags(__ios_base::skipws);
1380 
1381  _IntType __k;
1382  double __p;
1383  __is >> __k >> __p >> __x._M_gd;
1384  __x.param(typename negative_binomial_distribution<_IntType>::
1385  param_type(__k, __p));
1386 
1387  __is.flags(__flags);
1388  return __is;
1389  }
1390 
1391 
1392  template<typename _IntType>
1393  void
1394  poisson_distribution<_IntType>::param_type::
1395  _M_initialize()
1396  {
1397 #if _GLIBCXX_USE_C99_MATH_TR1
1398  if (_M_mean >= 12)
1399  {
1400  const double __m = std::floor(_M_mean);
1401  _M_lm_thr = std::log(_M_mean);
1402  _M_lfm = std::lgamma(__m + 1);
1403  _M_sm = std::sqrt(__m);
1404 
1405  const double __pi_4 = 0.7853981633974483096156608458198757L;
1406  const double __dx = std::sqrt(2 * __m * std::log(32 * __m
1407  / __pi_4));
1408  _M_d = std::round(std::max(6.0, std::min(__m, __dx)));
1409  const double __cx = 2 * __m + _M_d;
1410  _M_scx = std::sqrt(__cx / 2);
1411  _M_1cx = 1 / __cx;
1412 
1413  _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
1414  _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
1415  / _M_d;
1416  }
1417  else
1418 #endif
1419  _M_lm_thr = std::exp(-_M_mean);
1420  }
1421 
1422  /**
1423  * A rejection algorithm when mean >= 12 and a simple method based
1424  * upon the multiplication of uniform random variates otherwise.
1425  * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1426  * is defined.
1427  *
1428  * Reference:
1429  * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1430  * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
1431  */
1432  template<typename _IntType>
1433  template<typename _UniformRandomNumberGenerator>
1434  typename poisson_distribution<_IntType>::result_type
1436  operator()(_UniformRandomNumberGenerator& __urng,
1437  const param_type& __param)
1438  {
1439  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1440  __aurng(__urng);
1441 #if _GLIBCXX_USE_C99_MATH_TR1
1442  if (__param.mean() >= 12)
1443  {
1444  double __x;
1445 
1446  // See comments above...
1447  const double __naf =
1449  const double __thr =
1451 
1452  const double __m = std::floor(__param.mean());
1453  // sqrt(pi / 2)
1454  const double __spi_2 = 1.2533141373155002512078826424055226L;
1455  const double __c1 = __param._M_sm * __spi_2;
1456  const double __c2 = __param._M_c2b + __c1;
1457  const double __c3 = __c2 + 1;
1458  const double __c4 = __c3 + 1;
1459  // e^(1 / 78)
1460  const double __e178 = 1.0129030479320018583185514777512983L;
1461  const double __c5 = __c4 + __e178;
1462  const double __c = __param._M_cb + __c5;
1463  const double __2cx = 2 * (2 * __m + __param._M_d);
1464 
1465  bool __reject = true;
1466  do
1467  {
1468  const double __u = __c * __aurng();
1469  const double __e = -std::log(1.0 - __aurng());
1470 
1471  double __w = 0.0;
1472 
1473  if (__u <= __c1)
1474  {
1475  const double __n = _M_nd(__urng);
1476  const double __y = -std::abs(__n) * __param._M_sm - 1;
1477  __x = std::floor(__y);
1478  __w = -__n * __n / 2;
1479  if (__x < -__m)
1480  continue;
1481  }
1482  else if (__u <= __c2)
1483  {
1484  const double __n = _M_nd(__urng);
1485  const double __y = 1 + std::abs(__n) * __param._M_scx;
1486  __x = std::ceil(__y);
1487  __w = __y * (2 - __y) * __param._M_1cx;
1488  if (__x > __param._M_d)
1489  continue;
1490  }
1491  else if (__u <= __c3)
1492  // NB: This case not in the book, nor in the Errata,
1493  // but should be ok...
1494  __x = -1;
1495  else if (__u <= __c4)
1496  __x = 0;
1497  else if (__u <= __c5)
1498  __x = 1;
1499  else
1500  {
1501  const double __v = -std::log(1.0 - __aurng());
1502  const double __y = __param._M_d
1503  + __v * __2cx / __param._M_d;
1504  __x = std::ceil(__y);
1505  __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
1506  }
1507 
1508  __reject = (__w - __e - __x * __param._M_lm_thr
1509  > __param._M_lfm - std::lgamma(__x + __m + 1));
1510 
1511  __reject |= __x + __m >= __thr;
1512 
1513  } while (__reject);
1514 
1515  return result_type(__x + __m + __naf);
1516  }
1517  else
1518 #endif
1519  {
1520  _IntType __x = 0;
1521  double __prod = 1.0;
1522 
1523  do
1524  {
1525  __prod *= __aurng();
1526  __x += 1;
1527  }
1528  while (__prod > __param._M_lm_thr);
1529 
1530  return __x - 1;
1531  }
1532  }
1533 
1534  template<typename _IntType>
1535  template<typename _ForwardIterator,
1536  typename _UniformRandomNumberGenerator>
1537  void
1539  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1540  _UniformRandomNumberGenerator& __urng,
1541  const param_type& __param)
1542  {
1543  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1544  // We could duplicate everything from operator()...
1545  while (__f != __t)
1546  *__f++ = this->operator()(__urng, __param);
1547  }
1548 
1549  template<typename _IntType,
1550  typename _CharT, typename _Traits>
1551  std::basic_ostream<_CharT, _Traits>&
1552  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1553  const poisson_distribution<_IntType>& __x)
1554  {
1555  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1556  typedef typename __ostream_type::ios_base __ios_base;
1557 
1558  const typename __ios_base::fmtflags __flags = __os.flags();
1559  const _CharT __fill = __os.fill();
1560  const std::streamsize __precision = __os.precision();
1561  const _CharT __space = __os.widen(' ');
1563  __os.fill(__space);
1565 
1566  __os << __x.mean() << __space << __x._M_nd;
1567 
1568  __os.flags(__flags);
1569  __os.fill(__fill);
1570  __os.precision(__precision);
1571  return __os;
1572  }
1573 
1574  template<typename _IntType,
1575  typename _CharT, typename _Traits>
1578  poisson_distribution<_IntType>& __x)
1579  {
1580  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1581  typedef typename __istream_type::ios_base __ios_base;
1582 
1583  const typename __ios_base::fmtflags __flags = __is.flags();
1584  __is.flags(__ios_base::skipws);
1585 
1586  double __mean;
1587  __is >> __mean >> __x._M_nd;
1588  __x.param(typename poisson_distribution<_IntType>::param_type(__mean));
1589 
1590  __is.flags(__flags);
1591  return __is;
1592  }
1593 
1594 
1595  template<typename _IntType>
1596  void
1597  binomial_distribution<_IntType>::param_type::
1598  _M_initialize()
1599  {
1600  const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
1601 
1602  _M_easy = true;
1603 
1604 #if _GLIBCXX_USE_C99_MATH_TR1
1605  if (_M_t * __p12 >= 8)
1606  {
1607  _M_easy = false;
1608  const double __np = std::floor(_M_t * __p12);
1609  const double __pa = __np / _M_t;
1610  const double __1p = 1 - __pa;
1611 
1612  const double __pi_4 = 0.7853981633974483096156608458198757L;
1613  const double __d1x =
1614  std::sqrt(__np * __1p * std::log(32 * __np
1615  / (81 * __pi_4 * __1p)));
1616  _M_d1 = std::round(std::max(1.0, __d1x));
1617  const double __d2x =
1618  std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
1619  / (__pi_4 * __pa)));
1620  _M_d2 = std::round(std::max(1.0, __d2x));
1621 
1622  // sqrt(pi / 2)
1623  const double __spi_2 = 1.2533141373155002512078826424055226L;
1624  _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
1625  _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
1626  _M_c = 2 * _M_d1 / __np;
1627  _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
1628  const double __a12 = _M_a1 + _M_s2 * __spi_2;
1629  const double __s1s = _M_s1 * _M_s1;
1630  _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
1631  * 2 * __s1s / _M_d1
1632  * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
1633  const double __s2s = _M_s2 * _M_s2;
1634  _M_s = (_M_a123 + 2 * __s2s / _M_d2
1635  * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
1636  _M_lf = (std::lgamma(__np + 1)
1637  + std::lgamma(_M_t - __np + 1));
1638  _M_lp1p = std::log(__pa / __1p);
1639 
1640  _M_q = -std::log(1 - (__p12 - __pa) / __1p);
1641  }
1642  else
1643 #endif
1644  _M_q = -std::log(1 - __p12);
1645  }
1646 
1647  template<typename _IntType>
1648  template<typename _UniformRandomNumberGenerator>
1649  typename binomial_distribution<_IntType>::result_type
1650  binomial_distribution<_IntType>::
1651  _M_waiting(_UniformRandomNumberGenerator& __urng,
1652  _IntType __t, double __q)
1653  {
1654  _IntType __x = 0;
1655  double __sum = 0.0;
1656  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1657  __aurng(__urng);
1658 
1659  do
1660  {
1661  if (__t == __x)
1662  return __x;
1663  const double __e = -std::log(1.0 - __aurng());
1664  __sum += __e / (__t - __x);
1665  __x += 1;
1666  }
1667  while (__sum <= __q);
1668 
1669  return __x - 1;
1670  }
1671 
1672  /**
1673  * A rejection algorithm when t * p >= 8 and a simple waiting time
1674  * method - the second in the referenced book - otherwise.
1675  * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1676  * is defined.
1677  *
1678  * Reference:
1679  * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1680  * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
1681  */
1682  template<typename _IntType>
1683  template<typename _UniformRandomNumberGenerator>
1684  typename binomial_distribution<_IntType>::result_type
1686  operator()(_UniformRandomNumberGenerator& __urng,
1687  const param_type& __param)
1688  {
1689  result_type __ret;
1690  const _IntType __t = __param.t();
1691  const double __p = __param.p();
1692  const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
1693  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1694  __aurng(__urng);
1695 
1696 #if _GLIBCXX_USE_C99_MATH_TR1
1697  if (!__param._M_easy)
1698  {
1699  double __x;
1700 
1701  // See comments above...
1702  const double __naf =
1704  const double __thr =
1706 
1707  const double __np = std::floor(__t * __p12);
1708 
1709  // sqrt(pi / 2)
1710  const double __spi_2 = 1.2533141373155002512078826424055226L;
1711  const double __a1 = __param._M_a1;
1712  const double __a12 = __a1 + __param._M_s2 * __spi_2;
1713  const double __a123 = __param._M_a123;
1714  const double __s1s = __param._M_s1 * __param._M_s1;
1715  const double __s2s = __param._M_s2 * __param._M_s2;
1716 
1717  bool __reject;
1718  do
1719  {
1720  const double __u = __param._M_s * __aurng();
1721 
1722  double __v;
1723 
1724  if (__u <= __a1)
1725  {
1726  const double __n = _M_nd(__urng);
1727  const double __y = __param._M_s1 * std::abs(__n);
1728  __reject = __y >= __param._M_d1;
1729  if (!__reject)
1730  {
1731  const double __e = -std::log(1.0 - __aurng());
1732  __x = std::floor(__y);
1733  __v = -__e - __n * __n / 2 + __param._M_c;
1734  }
1735  }
1736  else if (__u <= __a12)
1737  {
1738  const double __n = _M_nd(__urng);
1739  const double __y = __param._M_s2 * std::abs(__n);
1740  __reject = __y >= __param._M_d2;
1741  if (!__reject)
1742  {
1743  const double __e = -std::log(1.0 - __aurng());
1744  __x = std::floor(-__y);
1745  __v = -__e - __n * __n / 2;
1746  }
1747  }
1748  else if (__u <= __a123)
1749  {
1750  const double __e1 = -std::log(1.0 - __aurng());
1751  const double __e2 = -std::log(1.0 - __aurng());
1752 
1753  const double __y = __param._M_d1
1754  + 2 * __s1s * __e1 / __param._M_d1;
1755  __x = std::floor(__y);
1756  __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
1757  -__y / (2 * __s1s)));
1758  __reject = false;
1759  }
1760  else
1761  {
1762  const double __e1 = -std::log(1.0 - __aurng());
1763  const double __e2 = -std::log(1.0 - __aurng());
1764 
1765  const double __y = __param._M_d2
1766  + 2 * __s2s * __e1 / __param._M_d2;
1767  __x = std::floor(-__y);
1768  __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
1769  __reject = false;
1770  }
1771 
1772  __reject = __reject || __x < -__np || __x > __t - __np;
1773  if (!__reject)
1774  {
1775  const double __lfx =
1776  std::lgamma(__np + __x + 1)
1777  + std::lgamma(__t - (__np + __x) + 1);
1778  __reject = __v > __param._M_lf - __lfx
1779  + __x * __param._M_lp1p;
1780  }
1781 
1782  __reject |= __x + __np >= __thr;
1783  }
1784  while (__reject);
1785 
1786  __x += __np + __naf;
1787 
1788  const _IntType __z = _M_waiting(__urng, __t - _IntType(__x),
1789  __param._M_q);
1790  __ret = _IntType(__x) + __z;
1791  }
1792  else
1793 #endif
1794  __ret = _M_waiting(__urng, __t, __param._M_q);
1795 
1796  if (__p12 != __p)
1797  __ret = __t - __ret;
1798  return __ret;
1799  }
1800 
1801  template<typename _IntType>
1802  template<typename _ForwardIterator,
1803  typename _UniformRandomNumberGenerator>
1804  void
1806  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1807  _UniformRandomNumberGenerator& __urng,
1808  const param_type& __param)
1809  {
1810  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1811  // We could duplicate everything from operator()...
1812  while (__f != __t)
1813  *__f++ = this->operator()(__urng, __param);
1814  }
1815 
1816  template<typename _IntType,
1817  typename _CharT, typename _Traits>
1818  std::basic_ostream<_CharT, _Traits>&
1819  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1820  const binomial_distribution<_IntType>& __x)
1821  {
1822  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1823  typedef typename __ostream_type::ios_base __ios_base;
1824 
1825  const typename __ios_base::fmtflags __flags = __os.flags();
1826  const _CharT __fill = __os.fill();
1827  const std::streamsize __precision = __os.precision();
1828  const _CharT __space = __os.widen(' ');
1830  __os.fill(__space);
1832 
1833  __os << __x.t() << __space << __x.p()
1834  << __space << __x._M_nd;
1835 
1836  __os.flags(__flags);
1837  __os.fill(__fill);
1838  __os.precision(__precision);
1839  return __os;
1840  }
1841 
1842  template<typename _IntType,
1843  typename _CharT, typename _Traits>
1846  binomial_distribution<_IntType>& __x)
1847  {
1848  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1849  typedef typename __istream_type::ios_base __ios_base;
1850 
1851  const typename __ios_base::fmtflags __flags = __is.flags();
1853 
1854  _IntType __t;
1855  double __p;
1856  __is >> __t >> __p >> __x._M_nd;
1857  __x.param(typename binomial_distribution<_IntType>::
1858  param_type(__t, __p));
1859 
1860  __is.flags(__flags);
1861  return __is;
1862  }
1863 
1864 
1865  template<typename _RealType>
1866  template<typename _ForwardIterator,
1867  typename _UniformRandomNumberGenerator>
1868  void
1870  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1871  _UniformRandomNumberGenerator& __urng,
1872  const param_type& __p)
1873  {
1874  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1875  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1876  __aurng(__urng);
1877  while (__f != __t)
1878  *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda();
1879  }
1880 
1881  template<typename _RealType, typename _CharT, typename _Traits>
1882  std::basic_ostream<_CharT, _Traits>&
1883  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1884  const exponential_distribution<_RealType>& __x)
1885  {
1886  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1887  typedef typename __ostream_type::ios_base __ios_base;
1888 
1889  const typename __ios_base::fmtflags __flags = __os.flags();
1890  const _CharT __fill = __os.fill();
1891  const std::streamsize __precision = __os.precision();
1893  __os.fill(__os.widen(' '));
1895 
1896  __os << __x.lambda();
1897 
1898  __os.flags(__flags);
1899  __os.fill(__fill);
1900  __os.precision(__precision);
1901  return __os;
1902  }
1903 
1904  template<typename _RealType, typename _CharT, typename _Traits>
1908  {
1909  typedef std::basic_istream<_CharT, _Traits> __istream_type;
1910  typedef typename __istream_type::ios_base __ios_base;
1911 
1912  const typename __ios_base::fmtflags __flags = __is.flags();
1914 
1915  _RealType __lambda;
1916  __is >> __lambda;
1918  param_type(__lambda));
1919 
1920  __is.flags(__flags);
1921  return __is;
1922  }
1923 
1924 
1925  /**
1926  * Polar method due to Marsaglia.
1927  *
1928  * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1929  * New York, 1986, Ch. V, Sect. 4.4.
1930  */
1931  template<typename _RealType>
1932  template<typename _UniformRandomNumberGenerator>
1933  typename normal_distribution<_RealType>::result_type
1935  operator()(_UniformRandomNumberGenerator& __urng,
1936  const param_type& __param)
1937  {
1938  result_type __ret;
1939  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1940  __aurng(__urng);
1941 
1942  if (_M_saved_available)
1943  {
1944  _M_saved_available = false;
1945  __ret = _M_saved;
1946  }
1947  else
1948  {
1949  result_type __x, __y, __r2;
1950  do
1951  {
1952  __x = result_type(2.0) * __aurng() - 1.0;
1953  __y = result_type(2.0) * __aurng() - 1.0;
1954  __r2 = __x * __x + __y * __y;
1955  }
1956  while (__r2 > 1.0 || __r2 == 0.0);
1957 
1958  const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
1959  _M_saved = __x * __mult;
1960  _M_saved_available = true;
1961  __ret = __y * __mult;
1962  }
1963 
1964  __ret = __ret * __param.stddev() + __param.mean();
1965  return __ret;
1966  }
1967 
1968  template<typename _RealType>
1969  template<typename _ForwardIterator,
1970  typename _UniformRandomNumberGenerator>
1971  void
1973  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
1974  _UniformRandomNumberGenerator& __urng,
1975  const param_type& __param)
1976  {
1977  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1978 
1979  if (__f == __t)
1980  return;
1981 
1982  if (_M_saved_available)
1983  {
1984  _M_saved_available = false;
1985  *__f++ = _M_saved * __param.stddev() + __param.mean();
1986 
1987  if (__f == __t)
1988  return;
1989  }
1990 
1991  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1992  __aurng(__urng);
1993 
1994  while (__f + 1 < __t)
1995  {
1996  result_type __x, __y, __r2;
1997  do
1998  {
1999  __x = result_type(2.0) * __aurng() - 1.0;
2000  __y = result_type(2.0) * __aurng() - 1.0;
2001  __r2 = __x * __x + __y * __y;
2002  }
2003  while (__r2 > 1.0 || __r2 == 0.0);
2004 
2005  const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
2006  *__f++ = __y * __mult * __param.stddev() + __param.mean();
2007  *__f++ = __x * __mult * __param.stddev() + __param.mean();
2008  }
2009 
2010  if (__f != __t)
2011  {
2012  result_type __x, __y, __r2;
2013  do
2014  {
2015  __x = result_type(2.0) * __aurng() - 1.0;
2016  __y = result_type(2.0) * __aurng() - 1.0;
2017  __r2 = __x * __x + __y * __y;
2018  }
2019  while (__r2 > 1.0 || __r2 == 0.0);
2020 
2021  const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
2022  _M_saved = __x * __mult;
2023  _M_saved_available = true;
2024  *__f = __y * __mult * __param.stddev() + __param.mean();
2025  }
2026  }
2027 
2028  template<typename _RealType>
2029  bool
2032  {
2033  if (__d1._M_param == __d2._M_param
2034  && __d1._M_saved_available == __d2._M_saved_available)
2035  {
2036  if (__d1._M_saved_available
2037  && __d1._M_saved == __d2._M_saved)
2038  return true;
2039  else if(!__d1._M_saved_available)
2040  return true;
2041  else
2042  return false;
2043  }
2044  else
2045  return false;
2046  }
2047 
2048  template<typename _RealType, typename _CharT, typename _Traits>
2050  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2051  const normal_distribution<_RealType>& __x)
2052  {
2053  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2054  typedef typename __ostream_type::ios_base __ios_base;
2055 
2056  const typename __ios_base::fmtflags __flags = __os.flags();
2057  const _CharT __fill = __os.fill();
2058  const std::streamsize __precision = __os.precision();
2059  const _CharT __space = __os.widen(' ');
2061  __os.fill(__space);
2063 
2064  __os << __x.mean() << __space << __x.stddev()
2065  << __space << __x._M_saved_available;
2066  if (__x._M_saved_available)
2067  __os << __space << __x._M_saved;
2068 
2069  __os.flags(__flags);
2070  __os.fill(__fill);
2071  __os.precision(__precision);
2072  return __os;
2073  }
2074 
2075  template<typename _RealType, typename _CharT, typename _Traits>
2078  normal_distribution<_RealType>& __x)
2079  {
2080  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2081  typedef typename __istream_type::ios_base __ios_base;
2082 
2083  const typename __ios_base::fmtflags __flags = __is.flags();
2085 
2086  double __mean, __stddev;
2087  __is >> __mean >> __stddev
2088  >> __x._M_saved_available;
2089  if (__x._M_saved_available)
2090  __is >> __x._M_saved;
2091  __x.param(typename normal_distribution<_RealType>::
2092  param_type(__mean, __stddev));
2093 
2094  __is.flags(__flags);
2095  return __is;
2096  }
2097 
2098 
2099  template<typename _RealType>
2100  template<typename _ForwardIterator,
2101  typename _UniformRandomNumberGenerator>
2102  void
2103  lognormal_distribution<_RealType>::
2104  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2105  _UniformRandomNumberGenerator& __urng,
2106  const param_type& __p)
2107  {
2108  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2109  while (__f != __t)
2110  *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m());
2111  }
2112 
2113  template<typename _RealType, typename _CharT, typename _Traits>
2114  std::basic_ostream<_CharT, _Traits>&
2115  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2116  const lognormal_distribution<_RealType>& __x)
2117  {
2118  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2119  typedef typename __ostream_type::ios_base __ios_base;
2120 
2121  const typename __ios_base::fmtflags __flags = __os.flags();
2122  const _CharT __fill = __os.fill();
2123  const std::streamsize __precision = __os.precision();
2124  const _CharT __space = __os.widen(' ');
2126  __os.fill(__space);
2128 
2129  __os << __x.m() << __space << __x.s()
2130  << __space << __x._M_nd;
2131 
2132  __os.flags(__flags);
2133  __os.fill(__fill);
2134  __os.precision(__precision);
2135  return __os;
2136  }
2137 
2138  template<typename _RealType, typename _CharT, typename _Traits>
2141  lognormal_distribution<_RealType>& __x)
2142  {
2143  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2144  typedef typename __istream_type::ios_base __ios_base;
2145 
2146  const typename __ios_base::fmtflags __flags = __is.flags();
2148 
2149  _RealType __m, __s;
2150  __is >> __m >> __s >> __x._M_nd;
2151  __x.param(typename lognormal_distribution<_RealType>::
2152  param_type(__m, __s));
2153 
2154  __is.flags(__flags);
2155  return __is;
2156  }
2157 
2158  template<typename _RealType>
2159  template<typename _ForwardIterator,
2160  typename _UniformRandomNumberGenerator>
2161  void
2163  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2164  _UniformRandomNumberGenerator& __urng)
2165  {
2166  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2167  while (__f != __t)
2168  *__f++ = 2 * _M_gd(__urng);
2169  }
2170 
2171  template<typename _RealType>
2172  template<typename _ForwardIterator,
2173  typename _UniformRandomNumberGenerator>
2174  void
2175  std::chi_squared_distribution<_RealType>::
2176  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2177  _UniformRandomNumberGenerator& __urng,
2178  const typename
2179  std::gamma_distribution<result_type>::param_type& __p)
2180  {
2181  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2182  while (__f != __t)
2183  *__f++ = 2 * _M_gd(__urng, __p);
2184  }
2185 
2186  template<typename _RealType, typename _CharT, typename _Traits>
2187  std::basic_ostream<_CharT, _Traits>&
2188  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2189  const chi_squared_distribution<_RealType>& __x)
2190  {
2191  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2192  typedef typename __ostream_type::ios_base __ios_base;
2193 
2194  const typename __ios_base::fmtflags __flags = __os.flags();
2195  const _CharT __fill = __os.fill();
2196  const std::streamsize __precision = __os.precision();
2197  const _CharT __space = __os.widen(' ');
2199  __os.fill(__space);
2201 
2202  __os << __x.n() << __space << __x._M_gd;
2203 
2204  __os.flags(__flags);
2205  __os.fill(__fill);
2206  __os.precision(__precision);
2207  return __os;
2208  }
2209 
2210  template<typename _RealType, typename _CharT, typename _Traits>
2213  chi_squared_distribution<_RealType>& __x)
2214  {
2215  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2216  typedef typename __istream_type::ios_base __ios_base;
2217 
2218  const typename __ios_base::fmtflags __flags = __is.flags();
2220 
2221  _RealType __n;
2222  __is >> __n >> __x._M_gd;
2223  __x.param(typename chi_squared_distribution<_RealType>::
2224  param_type(__n));
2225 
2226  __is.flags(__flags);
2227  return __is;
2228  }
2229 
2230 
2231  template<typename _RealType>
2232  template<typename _UniformRandomNumberGenerator>
2233  typename cauchy_distribution<_RealType>::result_type
2235  operator()(_UniformRandomNumberGenerator& __urng,
2236  const param_type& __p)
2237  {
2238  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2239  __aurng(__urng);
2240  _RealType __u;
2241  do
2242  __u = __aurng();
2243  while (__u == 0.5);
2244 
2245  const _RealType __pi = 3.1415926535897932384626433832795029L;
2246  return __p.a() + __p.b() * std::tan(__pi * __u);
2247  }
2248 
2249  template<typename _RealType>
2250  template<typename _ForwardIterator,
2251  typename _UniformRandomNumberGenerator>
2252  void
2253  cauchy_distribution<_RealType>::
2254  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2255  _UniformRandomNumberGenerator& __urng,
2256  const param_type& __p)
2257  {
2258  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2259  const _RealType __pi = 3.1415926535897932384626433832795029L;
2260  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2261  __aurng(__urng);
2262  while (__f != __t)
2263  {
2264  _RealType __u;
2265  do
2266  __u = __aurng();
2267  while (__u == 0.5);
2268 
2269  *__f++ = __p.a() + __p.b() * std::tan(__pi * __u);
2270  }
2271  }
2272 
2273  template<typename _RealType, typename _CharT, typename _Traits>
2275  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2276  const cauchy_distribution<_RealType>& __x)
2277  {
2278  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2279  typedef typename __ostream_type::ios_base __ios_base;
2280 
2281  const typename __ios_base::fmtflags __flags = __os.flags();
2282  const _CharT __fill = __os.fill();
2283  const std::streamsize __precision = __os.precision();
2284  const _CharT __space = __os.widen(' ');
2286  __os.fill(__space);
2288 
2289  __os << __x.a() << __space << __x.b();
2290 
2291  __os.flags(__flags);
2292  __os.fill(__fill);
2293  __os.precision(__precision);
2294  return __os;
2295  }
2296 
2297  template<typename _RealType, typename _CharT, typename _Traits>
2301  {
2302  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2303  typedef typename __istream_type::ios_base __ios_base;
2304 
2305  const typename __ios_base::fmtflags __flags = __is.flags();
2307 
2308  _RealType __a, __b;
2309  __is >> __a >> __b;
2310  __x.param(typename cauchy_distribution<_RealType>::
2311  param_type(__a, __b));
2312 
2313  __is.flags(__flags);
2314  return __is;
2315  }
2316 
2317 
2318  template<typename _RealType>
2319  template<typename _ForwardIterator,
2320  typename _UniformRandomNumberGenerator>
2321  void
2323  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2324  _UniformRandomNumberGenerator& __urng)
2325  {
2326  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2327  while (__f != __t)
2328  *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()));
2329  }
2330 
2331  template<typename _RealType>
2332  template<typename _ForwardIterator,
2333  typename _UniformRandomNumberGenerator>
2334  void
2335  std::fisher_f_distribution<_RealType>::
2336  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2337  _UniformRandomNumberGenerator& __urng,
2338  const param_type& __p)
2339  {
2340  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2341  typedef typename std::gamma_distribution<result_type>::param_type
2342  param_type;
2343  param_type __p1(__p.m() / 2);
2344  param_type __p2(__p.n() / 2);
2345  while (__f != __t)
2346  *__f++ = ((_M_gd_x(__urng, __p1) * n())
2347  / (_M_gd_y(__urng, __p2) * m()));
2348  }
2349 
2350  template<typename _RealType, typename _CharT, typename _Traits>
2351  std::basic_ostream<_CharT, _Traits>&
2352  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2353  const fisher_f_distribution<_RealType>& __x)
2354  {
2355  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2356  typedef typename __ostream_type::ios_base __ios_base;
2357 
2358  const typename __ios_base::fmtflags __flags = __os.flags();
2359  const _CharT __fill = __os.fill();
2360  const std::streamsize __precision = __os.precision();
2361  const _CharT __space = __os.widen(' ');
2363  __os.fill(__space);
2365 
2366  __os << __x.m() << __space << __x.n()
2367  << __space << __x._M_gd_x << __space << __x._M_gd_y;
2368 
2369  __os.flags(__flags);
2370  __os.fill(__fill);
2371  __os.precision(__precision);
2372  return __os;
2373  }
2374 
2375  template<typename _RealType, typename _CharT, typename _Traits>
2378  fisher_f_distribution<_RealType>& __x)
2379  {
2380  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2381  typedef typename __istream_type::ios_base __ios_base;
2382 
2383  const typename __ios_base::fmtflags __flags = __is.flags();
2385 
2386  _RealType __m, __n;
2387  __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
2388  __x.param(typename fisher_f_distribution<_RealType>::
2389  param_type(__m, __n));
2390 
2391  __is.flags(__flags);
2392  return __is;
2393  }
2394 
2395 
2396  template<typename _RealType>
2397  template<typename _ForwardIterator,
2398  typename _UniformRandomNumberGenerator>
2399  void
2401  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2402  _UniformRandomNumberGenerator& __urng)
2403  {
2404  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2405  while (__f != __t)
2406  *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng));
2407  }
2408 
2409  template<typename _RealType>
2410  template<typename _ForwardIterator,
2411  typename _UniformRandomNumberGenerator>
2412  void
2413  std::student_t_distribution<_RealType>::
2414  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2415  _UniformRandomNumberGenerator& __urng,
2416  const param_type& __p)
2417  {
2418  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2419  typename std::gamma_distribution<result_type>::param_type
2420  __p2(__p.n() / 2, 2);
2421  while (__f != __t)
2422  *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2));
2423  }
2424 
2425  template<typename _RealType, typename _CharT, typename _Traits>
2426  std::basic_ostream<_CharT, _Traits>&
2427  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2428  const student_t_distribution<_RealType>& __x)
2429  {
2430  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2431  typedef typename __ostream_type::ios_base __ios_base;
2432 
2433  const typename __ios_base::fmtflags __flags = __os.flags();
2434  const _CharT __fill = __os.fill();
2435  const std::streamsize __precision = __os.precision();
2436  const _CharT __space = __os.widen(' ');
2438  __os.fill(__space);
2440 
2441  __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
2442 
2443  __os.flags(__flags);
2444  __os.fill(__fill);
2445  __os.precision(__precision);
2446  return __os;
2447  }
2448 
2449  template<typename _RealType, typename _CharT, typename _Traits>
2452  student_t_distribution<_RealType>& __x)
2453  {
2454  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2455  typedef typename __istream_type::ios_base __ios_base;
2456 
2457  const typename __ios_base::fmtflags __flags = __is.flags();
2459 
2460  _RealType __n;
2461  __is >> __n >> __x._M_nd >> __x._M_gd;
2462  __x.param(typename student_t_distribution<_RealType>::param_type(__n));
2463 
2464  __is.flags(__flags);
2465  return __is;
2466  }
2467 
2468 
2469  template<typename _RealType>
2470  void
2471  gamma_distribution<_RealType>::param_type::
2472  _M_initialize()
2473  {
2474  _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
2475 
2476  const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
2477  _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
2478  }
2479 
2480  /**
2481  * Marsaglia, G. and Tsang, W. W.
2482  * "A Simple Method for Generating Gamma Variables"
2483  * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
2484  */
2485  template<typename _RealType>
2486  template<typename _UniformRandomNumberGenerator>
2487  typename gamma_distribution<_RealType>::result_type
2489  operator()(_UniformRandomNumberGenerator& __urng,
2490  const param_type& __param)
2491  {
2492  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2493  __aurng(__urng);
2494 
2495  result_type __u, __v, __n;
2496  const result_type __a1 = (__param._M_malpha
2497  - _RealType(1.0) / _RealType(3.0));
2498 
2499  do
2500  {
2501  do
2502  {
2503  __n = _M_nd(__urng);
2504  __v = result_type(1.0) + __param._M_a2 * __n;
2505  }
2506  while (__v <= 0.0);
2507 
2508  __v = __v * __v * __v;
2509  __u = __aurng();
2510  }
2511  while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2512  && (std::log(__u) > (0.5 * __n * __n + __a1
2513  * (1.0 - __v + std::log(__v)))));
2514 
2515  if (__param.alpha() == __param._M_malpha)
2516  return __a1 * __v * __param.beta();
2517  else
2518  {
2519  do
2520  __u = __aurng();
2521  while (__u == 0.0);
2522 
2523  return (std::pow(__u, result_type(1.0) / __param.alpha())
2524  * __a1 * __v * __param.beta());
2525  }
2526  }
2527 
2528  template<typename _RealType>
2529  template<typename _ForwardIterator,
2530  typename _UniformRandomNumberGenerator>
2531  void
2533  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2534  _UniformRandomNumberGenerator& __urng,
2535  const param_type& __param)
2536  {
2537  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2538  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2539  __aurng(__urng);
2540 
2541  result_type __u, __v, __n;
2542  const result_type __a1 = (__param._M_malpha
2543  - _RealType(1.0) / _RealType(3.0));
2544 
2545  if (__param.alpha() == __param._M_malpha)
2546  while (__f != __t)
2547  {
2548  do
2549  {
2550  do
2551  {
2552  __n = _M_nd(__urng);
2553  __v = result_type(1.0) + __param._M_a2 * __n;
2554  }
2555  while (__v <= 0.0);
2556 
2557  __v = __v * __v * __v;
2558  __u = __aurng();
2559  }
2560  while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2561  && (std::log(__u) > (0.5 * __n * __n + __a1
2562  * (1.0 - __v + std::log(__v)))));
2563 
2564  *__f++ = __a1 * __v * __param.beta();
2565  }
2566  else
2567  while (__f != __t)
2568  {
2569  do
2570  {
2571  do
2572  {
2573  __n = _M_nd(__urng);
2574  __v = result_type(1.0) + __param._M_a2 * __n;
2575  }
2576  while (__v <= 0.0);
2577 
2578  __v = __v * __v * __v;
2579  __u = __aurng();
2580  }
2581  while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2582  && (std::log(__u) > (0.5 * __n * __n + __a1
2583  * (1.0 - __v + std::log(__v)))));
2584 
2585  do
2586  __u = __aurng();
2587  while (__u == 0.0);
2588 
2589  *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha())
2590  * __a1 * __v * __param.beta());
2591  }
2592  }
2593 
2594  template<typename _RealType, typename _CharT, typename _Traits>
2596  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2597  const gamma_distribution<_RealType>& __x)
2598  {
2599  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2600  typedef typename __ostream_type::ios_base __ios_base;
2601 
2602  const typename __ios_base::fmtflags __flags = __os.flags();
2603  const _CharT __fill = __os.fill();
2604  const std::streamsize __precision = __os.precision();
2605  const _CharT __space = __os.widen(' ');
2607  __os.fill(__space);
2609 
2610  __os << __x.alpha() << __space << __x.beta()
2611  << __space << __x._M_nd;
2612 
2613  __os.flags(__flags);
2614  __os.fill(__fill);
2615  __os.precision(__precision);
2616  return __os;
2617  }
2618 
2619  template<typename _RealType, typename _CharT, typename _Traits>
2622  gamma_distribution<_RealType>& __x)
2623  {
2624  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2625  typedef typename __istream_type::ios_base __ios_base;
2626 
2627  const typename __ios_base::fmtflags __flags = __is.flags();
2629 
2630  _RealType __alpha_val, __beta_val;
2631  __is >> __alpha_val >> __beta_val >> __x._M_nd;
2632  __x.param(typename gamma_distribution<_RealType>::
2633  param_type(__alpha_val, __beta_val));
2634 
2635  __is.flags(__flags);
2636  return __is;
2637  }
2638 
2639 
2640  template<typename _RealType>
2641  template<typename _UniformRandomNumberGenerator>
2642  typename weibull_distribution<_RealType>::result_type
2644  operator()(_UniformRandomNumberGenerator& __urng,
2645  const param_type& __p)
2646  {
2647  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2648  __aurng(__urng);
2649  return __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
2650  result_type(1) / __p.a());
2651  }
2652 
2653  template<typename _RealType>
2654  template<typename _ForwardIterator,
2655  typename _UniformRandomNumberGenerator>
2656  void
2657  weibull_distribution<_RealType>::
2658  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2659  _UniformRandomNumberGenerator& __urng,
2660  const param_type& __p)
2661  {
2662  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2663  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2664  __aurng(__urng);
2665  auto __inv_a = result_type(1) / __p.a();
2666 
2667  while (__f != __t)
2668  *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
2669  __inv_a);
2670  }
2671 
2672  template<typename _RealType, typename _CharT, typename _Traits>
2673  std::basic_ostream<_CharT, _Traits>&
2674  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2675  const weibull_distribution<_RealType>& __x)
2676  {
2677  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2678  typedef typename __ostream_type::ios_base __ios_base;
2679 
2680  const typename __ios_base::fmtflags __flags = __os.flags();
2681  const _CharT __fill = __os.fill();
2682  const std::streamsize __precision = __os.precision();
2683  const _CharT __space = __os.widen(' ');
2685  __os.fill(__space);
2687 
2688  __os << __x.a() << __space << __x.b();
2689 
2690  __os.flags(__flags);
2691  __os.fill(__fill);
2692  __os.precision(__precision);
2693  return __os;
2694  }
2695 
2696  template<typename _RealType, typename _CharT, typename _Traits>
2700  {
2701  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2702  typedef typename __istream_type::ios_base __ios_base;
2703 
2704  const typename __ios_base::fmtflags __flags = __is.flags();
2706 
2707  _RealType __a, __b;
2708  __is >> __a >> __b;
2709  __x.param(typename weibull_distribution<_RealType>::
2710  param_type(__a, __b));
2711 
2712  __is.flags(__flags);
2713  return __is;
2714  }
2715 
2716 
2717  template<typename _RealType>
2718  template<typename _UniformRandomNumberGenerator>
2719  typename extreme_value_distribution<_RealType>::result_type
2721  operator()(_UniformRandomNumberGenerator& __urng,
2722  const param_type& __p)
2723  {
2724  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2725  __aurng(__urng);
2726  return __p.a() - __p.b() * std::log(-std::log(result_type(1)
2727  - __aurng()));
2728  }
2729 
2730  template<typename _RealType>
2731  template<typename _ForwardIterator,
2732  typename _UniformRandomNumberGenerator>
2733  void
2734  extreme_value_distribution<_RealType>::
2735  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2736  _UniformRandomNumberGenerator& __urng,
2737  const param_type& __p)
2738  {
2739  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2740  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2741  __aurng(__urng);
2742 
2743  while (__f != __t)
2744  *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1)
2745  - __aurng()));
2746  }
2747 
2748  template<typename _RealType, typename _CharT, typename _Traits>
2749  std::basic_ostream<_CharT, _Traits>&
2750  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2751  const extreme_value_distribution<_RealType>& __x)
2752  {
2753  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2754  typedef typename __ostream_type::ios_base __ios_base;
2755 
2756  const typename __ios_base::fmtflags __flags = __os.flags();
2757  const _CharT __fill = __os.fill();
2758  const std::streamsize __precision = __os.precision();
2759  const _CharT __space = __os.widen(' ');
2761  __os.fill(__space);
2763 
2764  __os << __x.a() << __space << __x.b();
2765 
2766  __os.flags(__flags);
2767  __os.fill(__fill);
2768  __os.precision(__precision);
2769  return __os;
2770  }
2771 
2772  template<typename _RealType, typename _CharT, typename _Traits>
2776  {
2777  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2778  typedef typename __istream_type::ios_base __ios_base;
2779 
2780  const typename __ios_base::fmtflags __flags = __is.flags();
2782 
2783  _RealType __a, __b;
2784  __is >> __a >> __b;
2786  param_type(__a, __b));
2787 
2788  __is.flags(__flags);
2789  return __is;
2790  }
2791 
2792 
2793  template<typename _IntType>
2794  void
2795  discrete_distribution<_IntType>::param_type::
2796  _M_initialize()
2797  {
2798  if (_M_prob.size() < 2)
2799  {
2800  _M_prob.clear();
2801  return;
2802  }
2803 
2804  const double __sum = std::accumulate(_M_prob.begin(),
2805  _M_prob.end(), 0.0);
2806  // Now normalize the probabilites.
2807  __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
2808  __sum);
2809  // Accumulate partial sums.
2810  _M_cp.reserve(_M_prob.size());
2811  std::partial_sum(_M_prob.begin(), _M_prob.end(),
2812  std::back_inserter(_M_cp));
2813  // Make sure the last cumulative probability is one.
2814  _M_cp[_M_cp.size() - 1] = 1.0;
2815  }
2816 
2817  template<typename _IntType>
2818  template<typename _Func>
2819  discrete_distribution<_IntType>::param_type::
2820  param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
2821  : _M_prob(), _M_cp()
2822  {
2823  const size_t __n = __nw == 0 ? 1 : __nw;
2824  const double __delta = (__xmax - __xmin) / __n;
2825 
2826  _M_prob.reserve(__n);
2827  for (size_t __k = 0; __k < __nw; ++__k)
2828  _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
2829 
2830  _M_initialize();
2831  }
2832 
2833  template<typename _IntType>
2834  template<typename _UniformRandomNumberGenerator>
2835  typename discrete_distribution<_IntType>::result_type
2836  discrete_distribution<_IntType>::
2837  operator()(_UniformRandomNumberGenerator& __urng,
2838  const param_type& __param)
2839  {
2840  if (__param._M_cp.empty())
2841  return result_type(0);
2842 
2843  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2844  __aurng(__urng);
2845 
2846  const double __p = __aurng();
2847  auto __pos = std::lower_bound(__param._M_cp.begin(),
2848  __param._M_cp.end(), __p);
2849 
2850  return __pos - __param._M_cp.begin();
2851  }
2852 
2853  template<typename _IntType>
2854  template<typename _ForwardIterator,
2855  typename _UniformRandomNumberGenerator>
2856  void
2857  discrete_distribution<_IntType>::
2858  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
2859  _UniformRandomNumberGenerator& __urng,
2860  const param_type& __param)
2861  {
2862  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2863 
2864  if (__param._M_cp.empty())
2865  {
2866  while (__f != __t)
2867  *__f++ = result_type(0);
2868  return;
2869  }
2870 
2871  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2872  __aurng(__urng);
2873 
2874  while (__f != __t)
2875  {
2876  const double __p = __aurng();
2877  auto __pos = std::lower_bound(__param._M_cp.begin(),
2878  __param._M_cp.end(), __p);
2879 
2880  *__f++ = __pos - __param._M_cp.begin();
2881  }
2882  }
2883 
2884  template<typename _IntType, typename _CharT, typename _Traits>
2886  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2887  const discrete_distribution<_IntType>& __x)
2888  {
2889  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
2890  typedef typename __ostream_type::ios_base __ios_base;
2891 
2892  const typename __ios_base::fmtflags __flags = __os.flags();
2893  const _CharT __fill = __os.fill();
2894  const std::streamsize __precision = __os.precision();
2895  const _CharT __space = __os.widen(' ');
2897  __os.fill(__space);
2899 
2900  std::vector<double> __prob = __x.probabilities();
2901  __os << __prob.size();
2902  for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
2903  __os << __space << *__dit;
2904 
2905  __os.flags(__flags);
2906  __os.fill(__fill);
2907  __os.precision(__precision);
2908  return __os;
2909  }
2910 
2911  template<typename _IntType, typename _CharT, typename _Traits>
2914  discrete_distribution<_IntType>& __x)
2915  {
2916  typedef std::basic_istream<_CharT, _Traits> __istream_type;
2917  typedef typename __istream_type::ios_base __ios_base;
2918 
2919  const typename __ios_base::fmtflags __flags = __is.flags();
2921 
2922  size_t __n;
2923  __is >> __n;
2924 
2925  std::vector<double> __prob_vec;
2926  __prob_vec.reserve(__n);
2927  for (; __n != 0; --__n)
2928  {
2929  double __prob;
2930  __is >> __prob;
2931  __prob_vec.push_back(__prob);
2932  }
2933 
2934  __x.param(typename discrete_distribution<_IntType>::
2935  param_type(__prob_vec.begin(), __prob_vec.end()));
2936 
2937  __is.flags(__flags);
2938  return __is;
2939  }
2940 
2941 
2942  template<typename _RealType>
2943  void
2944  piecewise_constant_distribution<_RealType>::param_type::
2945  _M_initialize()
2946  {
2947  if (_M_int.size() < 2
2948  || (_M_int.size() == 2
2949  && _M_int[0] == _RealType(0)
2950  && _M_int[1] == _RealType(1)))
2951  {
2952  _M_int.clear();
2953  _M_den.clear();
2954  return;
2955  }
2956 
2957  const double __sum = std::accumulate(_M_den.begin(),
2958  _M_den.end(), 0.0);
2959 
2960  __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
2961  __sum);
2962 
2963  _M_cp.reserve(_M_den.size());
2964  std::partial_sum(_M_den.begin(), _M_den.end(),
2965  std::back_inserter(_M_cp));
2966 
2967  // Make sure the last cumulative probability is one.
2968  _M_cp[_M_cp.size() - 1] = 1.0;
2969 
2970  for (size_t __k = 0; __k < _M_den.size(); ++__k)
2971  _M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
2972  }
2973 
2974  template<typename _RealType>
2975  template<typename _InputIteratorB, typename _InputIteratorW>
2976  piecewise_constant_distribution<_RealType>::param_type::
2977  param_type(_InputIteratorB __bbegin,
2978  _InputIteratorB __bend,
2979  _InputIteratorW __wbegin)
2980  : _M_int(), _M_den(), _M_cp()
2981  {
2982  if (__bbegin != __bend)
2983  {
2984  for (;;)
2985  {
2986  _M_int.push_back(*__bbegin);
2987  ++__bbegin;
2988  if (__bbegin == __bend)
2989  break;
2990 
2991  _M_den.push_back(*__wbegin);
2992  ++__wbegin;
2993  }
2994  }
2995 
2996  _M_initialize();
2997  }
2998 
2999  template<typename _RealType>
3000  template<typename _Func>
3001  piecewise_constant_distribution<_RealType>::param_type::
3002  param_type(initializer_list<_RealType> __bl, _Func __fw)
3003  : _M_int(), _M_den(), _M_cp()
3004  {
3005  _M_int.reserve(__bl.size());
3006  for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
3007  _M_int.push_back(*__biter);
3008 
3009  _M_den.reserve(_M_int.size() - 1);
3010  for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
3011  _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
3012 
3013  _M_initialize();
3014  }
3015 
3016  template<typename _RealType>
3017  template<typename _Func>
3018  piecewise_constant_distribution<_RealType>::param_type::
3019  param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
3020  : _M_int(), _M_den(), _M_cp()
3021  {
3022  const size_t __n = __nw == 0 ? 1 : __nw;
3023  const _RealType __delta = (__xmax - __xmin) / __n;
3024 
3025  _M_int.reserve(__n + 1);
3026  for (size_t __k = 0; __k <= __nw; ++__k)
3027  _M_int.push_back(__xmin + __k * __delta);
3028 
3029  _M_den.reserve(__n);
3030  for (size_t __k = 0; __k < __nw; ++__k)
3031  _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
3032 
3033  _M_initialize();
3034  }
3035 
3036  template<typename _RealType>
3037  template<typename _UniformRandomNumberGenerator>
3038  typename piecewise_constant_distribution<_RealType>::result_type
3039  piecewise_constant_distribution<_RealType>::
3040  operator()(_UniformRandomNumberGenerator& __urng,
3041  const param_type& __param)
3042  {
3043  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
3044  __aurng(__urng);
3045 
3046  const double __p = __aurng();
3047  if (__param._M_cp.empty())
3048  return __p;
3049 
3050  auto __pos = std::lower_bound(__param._M_cp.begin(),
3051  __param._M_cp.end(), __p);
3052  const size_t __i = __pos - __param._M_cp.begin();
3053 
3054  const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
3055 
3056  return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
3057  }
3058 
3059  template<typename _RealType>
3060  template<typename _ForwardIterator,
3061  typename _UniformRandomNumberGenerator>
3062  void
3063  piecewise_constant_distribution<_RealType>::
3064  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3065  _UniformRandomNumberGenerator& __urng,
3066  const param_type& __param)
3067  {
3068  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3069  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
3070  __aurng(__urng);
3071 
3072  if (__param._M_cp.empty())
3073  {
3074  while (__f != __t)
3075  *__f++ = __aurng();
3076  return;
3077  }
3078 
3079  while (__f != __t)
3080  {
3081  const double __p = __aurng();
3082 
3083  auto __pos = std::lower_bound(__param._M_cp.begin(),
3084  __param._M_cp.end(), __p);
3085  const size_t __i = __pos - __param._M_cp.begin();
3086 
3087  const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
3088 
3089  *__f++ = (__param._M_int[__i]
3090  + (__p - __pref) / __param._M_den[__i]);
3091  }
3092  }
3093 
3094  template<typename _RealType, typename _CharT, typename _Traits>
3096  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3097  const piecewise_constant_distribution<_RealType>& __x)
3098  {
3099  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
3100  typedef typename __ostream_type::ios_base __ios_base;
3101 
3102  const typename __ios_base::fmtflags __flags = __os.flags();
3103  const _CharT __fill = __os.fill();
3104  const std::streamsize __precision = __os.precision();
3105  const _CharT __space = __os.widen(' ');
3107  __os.fill(__space);
3109 
3110  std::vector<_RealType> __int = __x.intervals();
3111  __os << __int.size() - 1;
3112 
3113  for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
3114  __os << __space << *__xit;
3115 
3116  std::vector<double> __den = __x.densities();
3117  for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
3118  __os << __space << *__dit;
3119 
3120  __os.flags(__flags);
3121  __os.fill(__fill);
3122  __os.precision(__precision);
3123  return __os;
3124  }
3125 
3126  template<typename _RealType, typename _CharT, typename _Traits>
3129  piecewise_constant_distribution<_RealType>& __x)
3130  {
3131  typedef std::basic_istream<_CharT, _Traits> __istream_type;
3132  typedef typename __istream_type::ios_base __ios_base;
3133 
3134  const typename __ios_base::fmtflags __flags = __is.flags();
3136 
3137  size_t __n;
3138  __is >> __n;
3139 
3140  std::vector<_RealType> __int_vec;
3141  __int_vec.reserve(__n + 1);
3142  for (size_t __i = 0; __i <= __n; ++__i)
3143  {
3144  _RealType __int;
3145  __is >> __int;
3146  __int_vec.push_back(__int);
3147  }
3148 
3149  std::vector<double> __den_vec;
3150  __den_vec.reserve(__n);
3151  for (size_t __i = 0; __i < __n; ++__i)
3152  {
3153  double __den;
3154  __is >> __den;
3155  __den_vec.push_back(__den);
3156  }
3157 
3158  __x.param(typename piecewise_constant_distribution<_RealType>::
3159  param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
3160 
3161  __is.flags(__flags);
3162  return __is;
3163  }
3164 
3165 
3166  template<typename _RealType>
3167  void
3168  piecewise_linear_distribution<_RealType>::param_type::
3169  _M_initialize()
3170  {
3171  if (_M_int.size() < 2
3172  || (_M_int.size() == 2
3173  && _M_int[0] == _RealType(0)
3174  && _M_int[1] == _RealType(1)
3175  && _M_den[0] == _M_den[1]))
3176  {
3177  _M_int.clear();
3178  _M_den.clear();
3179  return;
3180  }
3181 
3182  double __sum = 0.0;
3183  _M_cp.reserve(_M_int.size() - 1);
3184  _M_m.reserve(_M_int.size() - 1);
3185  for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
3186  {
3187  const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
3188  __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
3189  _M_cp.push_back(__sum);
3190  _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
3191  }
3192 
3193  // Now normalize the densities...
3194  __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
3195  __sum);
3196  // ... and partial sums...
3197  __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum);
3198  // ... and slopes.
3199  __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum);
3200 
3201  // Make sure the last cumulative probablility is one.
3202  _M_cp[_M_cp.size() - 1] = 1.0;
3203  }
3204 
3205  template<typename _RealType>
3206  template<typename _InputIteratorB, typename _InputIteratorW>
3207  piecewise_linear_distribution<_RealType>::param_type::
3208  param_type(_InputIteratorB __bbegin,
3209  _InputIteratorB __bend,
3210  _InputIteratorW __wbegin)
3211  : _M_int(), _M_den(), _M_cp(), _M_m()
3212  {
3213  for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
3214  {
3215  _M_int.push_back(*__bbegin);
3216  _M_den.push_back(*__wbegin);
3217  }
3218 
3219  _M_initialize();
3220  }
3221 
3222  template<typename _RealType>
3223  template<typename _Func>
3224  piecewise_linear_distribution<_RealType>::param_type::
3225  param_type(initializer_list<_RealType> __bl, _Func __fw)
3226  : _M_int(), _M_den(), _M_cp(), _M_m()
3227  {
3228  _M_int.reserve(__bl.size());
3229  _M_den.reserve(__bl.size());
3230  for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
3231  {
3232  _M_int.push_back(*__biter);
3233  _M_den.push_back(__fw(*__biter));
3234  }
3235 
3236  _M_initialize();
3237  }
3238 
3239  template<typename _RealType>
3240  template<typename _Func>
3241  piecewise_linear_distribution<_RealType>::param_type::
3242  param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
3243  : _M_int(), _M_den(), _M_cp(), _M_m()
3244  {
3245  const size_t __n = __nw == 0 ? 1 : __nw;
3246  const _RealType __delta = (__xmax - __xmin) / __n;
3247 
3248  _M_int.reserve(__n + 1);
3249  _M_den.reserve(__n + 1);
3250  for (size_t __k = 0; __k <= __nw; ++__k)
3251  {
3252  _M_int.push_back(__xmin + __k * __delta);
3253  _M_den.push_back(__fw(_M_int[__k] + __delta));
3254  }
3255 
3256  _M_initialize();
3257  }
3258 
3259  template<typename _RealType>
3260  template<typename _UniformRandomNumberGenerator>
3261  typename piecewise_linear_distribution<_RealType>::result_type
3262  piecewise_linear_distribution<_RealType>::
3263  operator()(_UniformRandomNumberGenerator& __urng,
3264  const param_type& __param)
3265  {
3266  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
3267  __aurng(__urng);
3268 
3269  const double __p = __aurng();
3270  if (__param._M_cp.empty())
3271  return __p;
3272 
3273  auto __pos = std::lower_bound(__param._M_cp.begin(),
3274  __param._M_cp.end(), __p);
3275  const size_t __i = __pos - __param._M_cp.begin();
3276 
3277  const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
3278 
3279  const double __a = 0.5 * __param._M_m[__i];
3280  const double __b = __param._M_den[__i];
3281  const double __cm = __p - __pref;
3282 
3283  _RealType __x = __param._M_int[__i];
3284  if (__a == 0)
3285  __x += __cm / __b;
3286  else
3287  {
3288  const double __d = __b * __b + 4.0 * __a * __cm;
3289  __x += 0.5 * (std::sqrt(__d) - __b) / __a;
3290  }
3291 
3292  return __x;
3293  }
3294 
3295  template<typename _RealType>
3296  template<typename _ForwardIterator,
3297  typename _UniformRandomNumberGenerator>
3298  void
3299  piecewise_linear_distribution<_RealType>::
3300  __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
3301  _UniformRandomNumberGenerator& __urng,
3302  const param_type& __param)
3303  {
3304  __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3305  // We could duplicate everything from operator()...
3306  while (__f != __t)
3307  *__f++ = this->operator()(__urng, __param);
3308  }
3309 
3310  template<typename _RealType, typename _CharT, typename _Traits>
3311  std::basic_ostream<_CharT, _Traits>&
3312  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3313  const piecewise_linear_distribution<_RealType>& __x)
3314  {
3315  typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
3316  typedef typename __ostream_type::ios_base __ios_base;
3317 
3318  const typename __ios_base::fmtflags __flags = __os.flags();
3319  const _CharT __fill = __os.fill();
3320  const std::streamsize __precision = __os.precision();
3321  const _CharT __space = __os.widen(' ');
3323  __os.fill(__space);
3325 
3326  std::vector<_RealType> __int = __x.intervals();
3327  __os << __int.size() - 1;
3328 
3329  for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
3330  __os << __space << *__xit;
3331 
3332  std::vector<double> __den = __x.densities();
3333  for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
3334  __os << __space << *__dit;
3335 
3336  __os.flags(__flags);
3337  __os.fill(__fill);
3338  __os.precision(__precision);
3339  return __os;
3340  }
3341 
3342  template<typename _RealType, typename _CharT, typename _Traits>
3345  piecewise_linear_distribution<_RealType>& __x)
3346  {
3347  typedef std::basic_istream<_CharT, _Traits> __istream_type;
3348  typedef typename __istream_type::ios_base __ios_base;
3349 
3350  const typename __ios_base::fmtflags __flags = __is.flags();
3352 
3353  size_t __n;
3354  __is >> __n;
3355 
3356  std::vector<_RealType> __int_vec;
3357  __int_vec.reserve(__n + 1);
3358  for (size_t __i = 0; __i <= __n; ++__i)
3359  {
3360  _RealType __int;
3361  __is >> __int;
3362  __int_vec.push_back(__int);
3363  }
3364 
3365  std::vector<double> __den_vec;
3366  __den_vec.reserve(__n + 1);
3367  for (size_t __i = 0; __i <= __n; ++__i)
3368  {
3369  double __den;
3370  __is >> __den;
3371  __den_vec.push_back(__den);
3372  }
3373 
3374  __x.param(typename piecewise_linear_distribution<_RealType>::
3375  param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
3376 
3377  __is.flags(__flags);
3378  return __is;
3379  }
3380 
3381 
3382  template<typename _IntType>
3383  seed_seq::seed_seq(std::initializer_list<_IntType> __il)
3384  {
3385  for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
3386  _M_v.push_back(__detail::__mod<result_type,
3387  __detail::_Shift<result_type, 32>::__value>(*__iter));
3388  }
3389 
3390  template<typename _InputIterator>
3391  seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
3392  {
3393  for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
3394  _M_v.push_back(__detail::__mod<result_type,
3395  __detail::_Shift<result_type, 32>::__value>(*__iter));
3396  }
3397 
3398  template<typename _RandomAccessIterator>
3399  void
3400  seed_seq::generate(_RandomAccessIterator __begin,
3401  _RandomAccessIterator __end)
3402  {
3403  typedef typename iterator_traits<_RandomAccessIterator>::value_type
3404  _Type;
3405 
3406  if (__begin == __end)
3407  return;
3408 
3409  std::fill(__begin, __end, _Type(0x8b8b8b8bu));
3410 
3411  const size_t __n = __end - __begin;
3412  const size_t __s = _M_v.size();
3413  const size_t __t = (__n >= 623) ? 11
3414  : (__n >= 68) ? 7
3415  : (__n >= 39) ? 5
3416  : (__n >= 7) ? 3
3417  : (__n - 1) / 2;
3418  const size_t __p = (__n - __t) / 2;
3419  const size_t __q = __p + __t;
3420  const size_t __m = std::max(size_t(__s + 1), __n);
3421 
3422  for (size_t __k = 0; __k < __m; ++__k)
3423  {
3424  _Type __arg = (__begin[__k % __n]
3425  ^ __begin[(__k + __p) % __n]
3426  ^ __begin[(__k - 1) % __n]);
3427  _Type __r1 = __arg ^ (__arg >> 27);
3428  __r1 = __detail::__mod<_Type,
3429  __detail::_Shift<_Type, 32>::__value>(1664525u * __r1);
3430  _Type __r2 = __r1;
3431  if (__k == 0)
3432  __r2 += __s;
3433  else if (__k <= __s)
3434  __r2 += __k % __n + _M_v[__k - 1];
3435  else
3436  __r2 += __k % __n;
3437  __r2 = __detail::__mod<_Type,
3438  __detail::_Shift<_Type, 32>::__value>(__r2);
3439  __begin[(__k + __p) % __n] += __r1;
3440  __begin[(__k + __q) % __n] += __r2;
3441  __begin[__k % __n] = __r2;
3442  }
3443 
3444  for (size_t __k = __m; __k < __m + __n; ++__k)
3445  {
3446  _Type __arg = (__begin[__k % __n]
3447  + __begin[(__k + __p) % __n]
3448  + __begin[(__k - 1) % __n]);
3449  _Type __r3 = __arg ^ (__arg >> 27);
3450  __r3 = __detail::__mod<_Type,
3451  __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3);
3452  _Type __r4 = __r3 - __k % __n;
3453  __r4 = __detail::__mod<_Type,
3454  __detail::_Shift<_Type, 32>::__value>(__r4);
3455  __begin[(__k + __p) % __n] ^= __r3;
3456  __begin[(__k + __q) % __n] ^= __r4;
3457  __begin[__k % __n] = __r4;
3458  }
3459  }
3460 
3461  template<typename _RealType, size_t __bits,
3462  typename _UniformRandomNumberGenerator>
3463  _RealType
3464  generate_canonical(_UniformRandomNumberGenerator& __urng)
3465  {
3466  const size_t __b
3467  = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
3468  __bits);
3469  const long double __r = static_cast<long double>(__urng.max())
3470  - static_cast<long double>(__urng.min()) + 1.0L;
3471  const size_t __log2r = std::log(__r) / std::log(2.0L);
3472  size_t __k = std::max<size_t>(1UL, (__b + __log2r - 1UL) / __log2r);
3473  _RealType __sum = _RealType(0);
3474  _RealType __tmp = _RealType(1);
3475  for (; __k != 0; --__k)
3476  {
3477  __sum += _RealType(__urng() - __urng.min()) * __tmp;
3478  __tmp *= __r;
3479  }
3480  return __sum / __tmp;
3481  }
3482 
3483 _GLIBCXX_END_NAMESPACE_VERSION
3484 } // namespace
3485 
3486 #endif
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:1769
ios_base & scientific(ios_base &__base)
Calls base.setf(ios_base::scientific, ios_base::floatfield).
Definition: ios_base.h:966
friend bool operator==(const poisson_distribution &__d1, const poisson_distribution &__d2)
Return true if two Poisson distributions have the same parameters and the sequences that would be gen...
Definition: random.h:4568
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:3895
ios_base & dec(ios_base &__base)
Calls base.setf(ios_base::dec, ios_base::basefield).
Definition: ios_base.h:933
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:4078
A discrete geometric random number distribution.
Definition: random.h:4008
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:1943
A weibull_distribution random number distribution.
Definition: random.h:4848
Produces random numbers by combining random numbers from some base engine to produce random numbers w...
Definition: random.h:1292
_RandomNumberEngine::result_type result_type
Definition: random.h:1295
complex< _Tp > exp(const complex< _Tp > &)
Return complex base e exponential of z.
Definition: complex:757
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:5153
A fisher_f_distribution random number distribution.
Definition: random.h:3130
streamsize precision() const
Flags access.
Definition: ios_base.h:621
ios_base & fixed(ios_base &__base)
Calls base.setf(ios_base::fixed, ios_base::floatfield).
Definition: ios_base.h:958
_RealType result_type
Definition: random.h:2505
_Tp *return __arr
Return an iterator pointing to the first element of the array.
Definition: range_access.h:88
A Bernoulli random number distribution.
Definition: random.h:3572
friend std::basic_istream< _CharT, _Traits > & operator>>(std::basic_istream< _CharT, _Traits > &__is, std::poisson_distribution< _IntType1 > &__x)
Extracts a poisson_distribution random number distribution __x from the input stream __is...
_Tp accumulate(_InputIterator __first, _InputIterator __last, _Tp __init)
Accumulate values in a range.
Definition: stl_numeric.h:120
Template class basic_istream.
Definition: iosfwd:83
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
Definition: complex:893
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:3028
Properties of fundamental types.
Definition: limits:304
_OutputIterator partial_sum(_InputIterator __first, _InputIterator __last, _OutputIterator __result)
Return list of partial sums.
Definition: stl_numeric.h:237
complex< _Tp > pow(const complex< _Tp > &, int)
Return x to the y&#39;th power.
Definition: complex:979
A cauchy_distribution random number distribution.
Definition: random.h:2929
constexpr int __lg(int __n)
This is a helper function for the sort routines and for random.tcc.
A student_t_distribution random number distribution.
Definition: random.h:3354
A discrete binomial random number distribution.
Definition: random.h:3777
A extreme_value_distribution random number distribution.
Definition: random.h:5051
size_type size() const noexcept
Definition: stl_vector.h:640
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:2998
static constexpr _Tp max() noexcept
Definition: limits:313
ios_base & left(ios_base &__base)
Calls base.setf(ios_base::left, ios_base::adjustfield).
Definition: ios_base.h:916
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:5123
const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:217
iterator begin() noexcept
Definition: stl_vector.h:533
void clear(iostate __state=goodbit)
[Re]sets the error state.
Definition: basic_ios.tcc:41
A discrete Poisson random number distribution.
Definition: random.h:4430
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:4950
const _Tp & min(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:194
result_type operator()()
Gets the next value in the generated random number sequence.
void reserve(size_type __n)
Attempt to preallocate enough memory for specified number of elements.
Definition: vector.tcc:66
_Tp abs(const complex< _Tp > &)
Return magnitude of z.
Definition: complex:596
A chi_squared_distribution random number distribution.
Definition: random.h:2719
A normal continuous distribution for random numbers.
Definition: random.h:2085
void push_back(const value_type &__x)
Add data to the end of the vector.
Definition: stl_vector.h:899
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:4920
complex< _Tp > tan(const complex< _Tp > &)
Return complex tangent of z.
Definition: complex:920
ios_base & skipws(ios_base &__base)
Calls base.setf(ios_base::skipws).
Definition: ios_base.h:859
A gamma continuous distribution for random numbers.
Definition: random.h:2502
_ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp &__val)
Finds the first position in which val could be inserted without changing the ordering.
Definition: stl_algobase.h:990
char_type widen(char __c) const
Widens characters.
Definition: basic_ios.h:443
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:4108
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:4712
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:2195
_RealType generate_canonical(_UniformRandomNumberGenerator &__g)
A function template for converting the output of a (integral) uniform random number generator to a fl...
bitset< _Nb > operator>>(size_t __position) const noexcept
Self-explanatory.
Definition: bitset:1353
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:2619
initializer_list
static constexpr _Tp epsilon() noexcept
Definition: limits:325
fmtflags flags() const
Access to format flags.
Definition: ios_base.h:551
char_type fill() const
Retrieves the empty character.
Definition: basic_ios.h:364
iterator end() noexcept
Definition: stl_vector.h:551
Uniform continuous distribution for random numbers.
Definition: random.h:1867
Template class basic_ostream.
Definition: iosfwd:86
A model of a linear congruential random number generator.
Definition: random.h:241
static constexpr _Tp min() noexcept
Definition: limits:309
param_type param() const
Returns the parameter set of the distribution.
Definition: random.h:1739
Uniform discrete distribution for random numbers. A discrete random distribution on the range with e...
Definition: random.h:1666
ptrdiff_t streamsize
Integral type for I/O operation counts and buffer sizes.
Definition: postypes.h:98
back_insert_iterator< _Container > back_inserter(_Container &__x)
Definition: stl_iterator.h:480
complex< _Tp > log(const complex< _Tp > &)
Return complex natural logarithm of z.
Definition: complex:784
An exponential continuous distribution for random numbers.
Definition: random.h:4646
result_type operator()()
Gets the next value in the generated random number sequence.
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition: random.h:4532
void seed(result_type __s=default_seed)
Reseeds the linear_congruential_engine random number generator engine sequence to the seed __s...